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Abstract—Sports video captioning refers to the task of
automatically generating a textual description for sports
events (e.g., football, basketball or volleyball games). Although a
great deal of previous work has shown promising performance
in producing a coarse and general description of a video but
lack of professional sports knowledge, it is still quite challenging
to caption a sports video with multiple fine-grained player’s
actions and complex group relationship between players. In this
study, we present a novel hierarchical recurrent neural network
based framework with an attention mechanism for sports video
captioning, in which a motion representation module is proposed
to capture individual pose attribute and dynamical trajectory
cluster information with extra professional sports knowledge, and
a group relationship module is employed to design a scene graph
for modeling players’ interaction by a gated graph convolutional
network. Moreover, we introduce a new dataset called Sports
Video Captioning Dataset-Volleyball for evaluation. The proposed
model is evaluated on three widely-adopted public datasets and
our collected new dataset, on which the effectiveness of our
method is well demonstrated.

Index Terms—Sports Video, Video Captioning, Motion Repre-
sentation, Group Relationship, RNN.

I. INTRODUCTION

SPORTS video captioning, which aims at elaborately de-
scribing events and actions happened in a match with nat-

ural language, has captured more attention in computer vision,
multimedia and natural language processing communities [1],
[2]. In sports videos, a plenty variety of players’ actions
and interactions occur at the same time, e.g., in a volleyball
game (see Figure 1). Automatically generating paragraph to
describe more details of sports events has potential huge
application value in sports video analysis and sports broadcast.
However, the complex variations of the dynamic event and
temporal structures make sports video captioning an arduous
problem.
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Fig. 1. Illustration of sports video captioning task. Conventional captioning
always generates a coarse-level textual description for the given video. In
contrast, the task of sports video captioning needs to capture more fine-grained
individual action details and group relationships between players. The main
differences are highlighted in red.

Recently, a great number of researchers strive to this
emerging topic. Conventional algorithms for video captioning
can be divided into two categories: one is the template-
based language model [3]–[5], which generates captions based
on the predefined grammar rules, templates of sentences,
and correlation between each part of sentence with detected
object; and the other is the sequence learning method [6]–
[14], which is inspired by Recurrent Neural Nework (RNN),
such as Long Short-Term Memory (LSTM) [15] and Gated
Recurrent Unit (GRU) [16]. Sequence learning based meth-
ods have already achieved the state-of-the-art performance
at present for visual captioning. Generally, these approaches
are designed based on the encoder-decoder architecture: a
encoder is utilized to translate input original video frames
to the compact visual features, while a decoder is employed
to generate words and sentences by sequence. However, all
these previous methods can only generate coarse and general
description by a collection of the basic frame-level appearance
features, which ignore the motion details of individual action
and group activity, resulting in inappropriate for sports video
captioning.

In order to fully understand sports events, sports video
captioning should take global visual appearance as well as the
fine-grained individual motion information into consideration.
Theoretically, the action of each individual player is the
mainly fine-grained motion information in a sports event,
which involves player’s articulated movements/pose estima-
tion [17]–[19] and motional trajectory [20], [21]. Capturing
and representing these movements accurately and effectively
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from the untrimmed video would provide more informative
cues for captioning. Moreover, in a sports match, especially
for ball games, the dynamic motion of a team or group
also contains rich information of sports tactics, which is well
worth to comprehensively analyzing. Capturing the movement
trajectory of team/group can express the change of match
situation and tactic strategy, which also is often neglected by
traditional methods.

Furthermore, conventional video captioning methods lack
sports knowledge, so that their produced text captions cannot
describe sports match professionally and accurately. Estab-
lishing different dictionaries of sports terms and introducing
more specific tactic knowledge into sports video captioning is
essential and necessary.

Another difficulty is how to represent the complex group
activity happened in sports events. To recognize the group
activity under a variety of scenarios, the context informa-
tion should be taken into consideration, especially the re-
lationship between player and player, between player and
objects, and between player and scene. A number of team
sports (e.g., soccer and volleyball) contain a variety of mutual
interactions (e.g., teammates and opponents) and frequently
changeable situations (e.g., attack and defend), thus exactly
discovering and understanding group relationships and encod-
ing them for captioning are challenging. As an example, in
the “team spiking activity” in Figure 1, one player is spiking
and her teammates are waiting or standing to cooperate with
her, while their opponents are trying to block and dig.

In addition, attention mechanism [22]–[24] is often intro-
duced to identify the salient visual regions with high objec-
tiveness score and meaningful visual pattern of an image. For
the task of visual captioning, the performance can be also
improved by attending the spatial salient object and the tem-
poral motion information, and selectively assigning different
weights to encode features. As for sports video captioning, the
key player’s action or movement, such as dunking in basketball
and shooting in soccer, invariably play a significant role in a
sports event, thus precisely attending to these highlights and
retrieving the crucial movement are overwhelmingly critical
for sports video captioning.

In this work, to address the above-mentioned issues, we
propose a novel hierarchical LSTM-based deep framework for
sports video captioning with attentive motion representation
and group relationship modeling. In particular, individual pose
attribute features and dynamical trajectory cluster information
will be fed into a hierarchical encoder-decoder architecture.
Generically, the semantic attributes can be leveraged as an
extra sports professional knowledge to guide the generation of
sports captions, which contains a wealth of sports terminology.
Furthermore, we construct a scene graph to model group
relationship among players via a gated graph convolutional
network, and obtain a plenty of contextual information of
sports events. Then, we fuse the motion representation, group
relationship and global frame-level features and decode them
into natural language utilizing a sequence to sequence archi-
tecture with the attention mechanism.

It should be mentioned that this paper is an extension of our
conference paper [25]. Compared to the preliminary version,

we additionally introduce extra professional sports knowledge
to guide the training of the motion representation module,
present a group relationship module with the gated graph
convolution network and scene graph modeling, and devise
a hierarchical bi-directional LSTMs as the encoder-decoder in
our proposed framework. Moreover, in the testing process, we
conduct extensive experiments on one more public benchmark
datasets, i.e., ActivityNet Dataset [26], further perform human
evaluation for sports video captioning with three criteria,
illustrate more qualitative results, and more detailed ablative
analysis to demonstrate the effectiveness of each component
in our proposed framework in this paper.

The main contribution of this work can be summarized as
the following:
• We introduce a novel deep framework for sports video

captioning with attentive motion representation and group
relationship modeling based on the hierarchical recurrent
neural networks.

• A motion representation module is designed to capture
player’s pose and trajectory information, where we extract
semantic attributes from player’s skeletons, and cluster
trajectory from dynamical movement guided by extra
sports professional knowledge.

• A group relationship module is devised to construct a
scene graph for modeling the interaction between players
by a gated graph convolutional network.

• We annotate a new dataset called Sports Video Captioning
Dataset-Volleyball that mainly contains volleyball games
for evaluation. Meanwhile, extensive experiments on
three public benchmarks and our dataset demonstrate the
effectiveness and general applicability of our framework.
To the best of our knowledge, we are the first to propose
such a volleyball video captioning dataset.

The rest of this paper is organized as follows. Related
work on video captioning and sports video analysis is briefly
discussed in Section II. The proposed framework for sports
video captioning is presented in detail in Section III. Then the
experimental results are shown and analyzed in Section V.
Finally, we draw the conclusion in Section VI.

II. RELATED WORK

A. Video Captioning

Early significant efforts often adopt template-based lan-
guage methods [3]–[5] that align sentence elements (e.g., sub-
ject, verb, object) with detected words from visual con-
tents. Rohrbach et al. [4] learned a conditional random
fields (CRF) [27] to model the relationships between different
components of video contents, and generated sentence descrip-
tions for videos. Xu et al. [5] proposed an unified framework to
jointly model video and language, by utilizing a compositional
language model and a deep neural network.

Very recently, growing sequence learning approaches [6]–
[9] have been performed to learn probability distribution in
space of video and textual sentence for video captioning.
Venugopalan et al. [6] proposed an end-to-end sequence-to-
sequence model to generate captions for videos, and their
model can directly encode the temporal information by LSTM.
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Yao et al. [7] presented a temporal attention mechanism to
automatically select temporal segments for generating video
caption. Yu et al. [8] proposed a hierarchical recurrent neural
network, which consisted of a sentence generator and a para-
graph generator for video captioning. Pan et al. [9] presented
an LSTM-Embedding framework considering the relation be-
tween sentence semantic and video content. Furthermore, a
great amount of research attended to semantic factors in visual
and text content. Pasunuru et al. [10] presented a multi-
task and knowledge sharing-based method for unsupervised
video prediction and language entailment generation. Gan et
al. [11] developed a semantic compositional network (SCN)
to detect semantic concepts or tags from visual contents and
employed an LSTM to compose the probability of each tag.
Dong et al. [12] proposed an interpretive loss via extracting
interpretable features from semantically meaningful topics for
visual captioning. Pan et al. [13] presented a CNN-RNN
framework to transfer semantic attribute learned from images
and videos. Baraldi et al. [28] presented a recurrent video en-
coding scheme by discovering and leveraging the hierarchical
structure of the video. Shen et al. [29] trained a model based on
weak video-level sentence annotations by using lexical fully
convolutional neural networks (Lexical-FCN) [30]. Wang et
al. [31] added reconstruction sub-network into conventional
encoder-decoder framework. Chen et al. [32] performed video
captioning via picking the informative frames, and Wang et
al. [33] shared the memory between video features and textual
data to guide attention mechanism. Afterward, more modality
data are introduced to handle the problem. Hori et al. [14]
incorporated audio features with image and motion feature for
jointly video captioning via multi-model attention mechanism.
In addition, reinforcement learning has been introduced into
the issue [34].

Krishna et al. [26] firstly introduced a dense video cap-
tioning model that combined the proposal and the captioning
modules to caption each event by a single sentence. Following
this work, Wang et al. [35] fused the contextual information
of past and future attentively with a gating strategy, and Zhou
et al. [36] adopted a masked transformer framework with self-
attention for dense video captioning. Li et al. [37] designed a
descriptiveness regression-based approach for video proposal
localizing and dense captioning jointly.

However, the captions generated by these works are coarse-
level and missing lots of fine-grained level or detailed move-
ment occurring in sports videos, consequently they are all
inappropriate for sports video captioning. A very closely
related work to ours is [38], and their work introduced a
sports narrative method by employing player localization,
group activity and action information. However, their approach
requires pixel-level annotation in each frame and lacks extra
professional knowledge of different sports types. While our
framework can introduce sports knowledge as the semantic
attribute to guide caption generation, and adopt a trajectory
clustering approach to capture dynamical motion information.
Last but not least, we employ the attention mechanism for
further improved performance.

B. Sports Video Analysis

In recent years, sports video analysis has became an emerg-
ing research topic due to its wide-range audiences and enor-
mous economic potential, which contains a wealth of issues
in computer vision and multimedia. With the development of
the Internet and mobile devices, a considerable amount of
research have been devoted to sports video analysis, which
mainly includes player tracking [39]–[41], ball detection [42]–
[44], group activity/individual action recognition [45]–[49],
understanding specific event during the match [1], [2], [20],
[50] and highlight summary [51], etc.

For player tracking, Lu et al. [39], [40] proposed a Kalman
Filter (KF) [52] and conditional random field (CRF) [27]
based approach to automatic tracking and labeling players in
broadcast sports videos. Considering player’s trajectories, Liu
et al. [41] introduced a Game Context Features (GCF) based
model for tracking players in team sports. The model was
built to describe the current match state and the distribution of
players, and adopted hierarchical trajectories to produce game
context features with Random Decision Forest [53]. Morimitsu
et al. [54] adopted attributed graphs for tracking multiple
objects in structured sports videos. While tracking the ball
in team sports is intensely hard because of its small size and
low-resolution. Wang et al. [42], [43] proposed a conditional
random field (CRF) [27] and trajectories based method for ball
tracking, by exploiting the correlation between the ball and
player. Maksai et al. [44] performed a Mixed Integer Program
considering physical constraints to track the ball, estimate
motion of the ball, and different states of the ball’s landing.
A two-stream deep model for action recognition is introduced
via combining RGB and flow frames [47]. Besides, Ibrahim et
al. [48] devised a hierarchical LSTM model for group activity
recognition in the volleyball game. Then, Shu et al.. [49]
introduced a confidence-energy recurrent network (CERN)
with an energy layer to estimate group activity. To handle
the high order context modeling problem in group activity
recognition, Qi et al. [46] presented an attentive semantic
RNN model, and Wang et al. [55] proposed a recurrent context
modeling framework. Event detection is a semantically high-
level task, so that it is more complex to address. Xu et al. [1]
presented an approach for event detection from live sports
game based on text and video on the Internet. Zhu et al. [20]
detected the goal event through extracting tactic information
from broadcast soccer videos. Duan et al. [2] proposed a
mid-level representation between audio-visual processing and
semantic analysis for event detection in sports videos. Lin et
al. [51] performed a context-based method to select highlights
and estimate the label of each streaming sports video segment.
In addition, in order to classify ego-action sports categories,
Kitani et al. [50] introduced a fast unsupervised learning
method to deal with first-person sports videos.

However, these previous methods are not specially designed
for sports video captioning task. In our work, we propose a
novel specific framework to describe the details of sports game
with attentive motion representation and group relationship
modeling.
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Fig. 2. The overall framework of our proposed sports video captioning model. (1) Action Proposal Module segments the whole video into activities of
players. (2) Motion Representation Module employs detected pose attribute (on the grey background) and trajectory cluster (on the red background) to encode
the individual action and the corresponding dynamical movement. (3) Group Relationship Module (on the green background) constructs a scene graph to
model the interactions among players. (4) Finally, motion and group relationship features are all fused and decoded through an LSTM-based Encoder-Decoder
Architecture with an attention mechanism (on the blue background). (5) Description Generation Module is used to generate textual caption.

III. THE PROPOSED APPROACH

The framework of the proposed approach for sports video
captioning is illustrated in Figure 2. Concretely, our framework
includes: (1) action proposal module; (2) motion represen-
tation module; (3) group relationship module; (4) encoder-
decoder with attention mechanism and (5) description gen-
eration module. We adopt a sequence-to-sequence based ar-
chitecture [6], where the input is a sequence of video frames,
and the output is a sequence of words. And the lengths of the
input and output are variable. Because of the success of long
short-term memory (LSTM) in the visual captioning task, we
employ this paradigm in our framework.

A. Action Proposal Module

Given a video, the first task is retrieving and localiz-
ing temporal segments that probably contain crucial spatio-
temporal group events (i.e., attacking, defending in a sports
game) or significant individual actions (i.e., spiking, passing

in a volleyball match). In our work, we adopt Deep Action
Proposals (DAP) [56] method to generate temporal action
proposals. We infer the temporal location and duration of the
action proposals from a T -frame video. And each proposal
is associated with a confidence score. In practice, the input
feature of video frames is extracted from the top layer of a 3D
convolutional network (C3D) [57], and then an LSTM network
is utilized to encode the sequential information.

B. Motion Representation Module

In order to describe sports video with natural language,
more fine-grained details in terms of individual player’s action
would be of great assistance. Therefore, we design a mo-
tion representation module to model player’s actions, which
consists of a pose attribute detection part and a trajectory
clustering part.

1) Pose Attribute Detection: Pose estimation is often used
to recognize the individual action in a fine-grained manner.
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Fig. 3. Pipeline of pose attribute detection in our framework. Firstly, we
perform pose estimation to acquire the keypoints with hourglass model [59].
Then, we select five body part patches of RGB and optical flow, i.e., right
hand/left hand/upper body/bottom body/full body, as input to P-CNN [18]. P-
CNN is able to capture aggregated pose-based deep features combining RGB-
CNN and Flow-CNN. Finally, we introduce extra sports knowledge as our
attributes vocabulary to train a CNN model for semantic attribute detection.

Given a sequence of video frames, we desire to determine
the precise pixel location of critical human body’s keypoints,
which is awarding to understand individual posture and limb
articulation. In our work, we firstly utilize Faster R-CNN [58]
to localize all players with the corresponding bounding boxes.
Then we have a set of candidate objects with the bounding
boxes that represent their location and appearance feature.
Based on the predicted probability map, we select several
bounding boxes with high confidence score per frame (e.g., we
choose 12 bounding boxes on Volleyball Dataset). Afterward,
we adopt hourglass model [59] to extract the pose keypoints
of each player. Center point of the detected skeleton is utilized
to measure the relative offset of each body part, and optical
flow values represent the motion of every joint, which manifest
the characteristics of the player’s movement (e.g., velocity and
direction).

As illustrated in Figure 3, we capture the pose-based CNN
features with P-CNN [18] from each track of individual
player’s body parts in the video clip. Based on the position of
body joints (i.e., we select five pose parts per player: right
hand, left hand, upper body, bottom body and full body),
we crop corresponding RGB and optical flow patches and
normalize them to 224 × 224. We adopt VGG-16 network
pre-trained on the ImageNet dataset [60] for RGB patches,
and motion network in [61] pre-trained on the UCF-101
dataset [62]. The pose-based feature for each player in the
video clip can be denoted as Fpose, which concatenated all
the feature of each pose part.

However, directly and disorderly pooling all the players’
pose-based feature inevitably fails to represent rich semantic
information, we desire to further capture more semantic at-
tributes from such raw features. For sports narrative, learning
semantic knowledge with respect to specific sports type would
be significantly beneficial. Accordingly, we build an attribute
vocabulary from the annotated sentences in dataset (e.g., UCF-
101 [62] for general action attributes, Volleyball [48] for vol-

leyball action attributes), and we use the top k high-frequency
verbs and nouns of them. To be specific, we regard such a
vocabulary of pose semantic attribute as sports knowledge.
Moreover, we also collect external sports knowledge from
public texts on the Internet, e.g., Wikipedia, including the
words and phrases that humans professionally and commonly
utilize to describe the sports events. Then, the pose attribute
can be certain object (e.g., hand, leg, head, feet) or individ-
ual motion (e.g., spike, dig, pass). When training the pose
attribute detection network based on VGG-16, we employ the
ground-truth attribute label of each player on the datasets,
e.g., individual action label (spiking, passing, standing, etc.)
on SVCDV to train the cross-entropy loss function. The input
data of the network are pose-based features of each player,
and the output data are predicted binary pose attribute vectors.
Given n player’s pose-based features {F 1

pose, ..., F
n
pose}, we

take the i-th player’s feature F i
pose as input, and employ

the last fully connected layer of VGG-16 net to be a k-
way attribute classifier (where k refers to the total number of
attributes in our built sports knowledge dictionary). Moreover,
we formulate the predicted pose attribute vector for the i-th
player in the one-hot scheme as ŷi = [ŷi1, · · · , ŷik], where
ŷik = 1 if the player is predicted with the k-th attribute, and
ŷik = 0 otherwise. The predicted attribute is determined by
the corresponding classification probability scores through the
softmax layer of the network. Then, we define the ground-truth
attribute annotation of the i-th player as yi = [yi1, · · · , yik], and
the loss function of our proposed attribute detection network
can be formulated as the following:

Latt = −
1

n

n∑
i=1

k∑
j=1

[ŷij log(y
i
j) + (1− ŷij) log(1− y

i
j)]. (1)

Particularly, we assign the labels of input data depended on
the order of coordinate of players in the frame. By sorting
the center point’s coordinate dx of each player’s bounding
box from left to right, we can classify pose attribute with
input pose-based feature of each player. After training, we
formulate the pose attribute vector by fusing ŷi for all the
players by order. The fusion order of each player’s attribute
vector is also performed by the dx coordinates position of
the corresponding bounding box. Furthermore, we adopt the
attention mechanism in the encoder network (will be described
in III-D) to get attentive pose attribute representation Fpose att

of n player’s poss attribute vector:

Fpose att =

n∑
i=1

{Attention Weight} · ŷi. (2)

It is worthy to note that we capture the pose attributes of
all the players from a sequence of video clips, and we will
produce T copies for all frames of the video based on the
encoder-decoder architecture.

2) Trajectory Clustering: The trajectory is good at rep-
resenting temporal motion in videos, and clustering them
into groups can capture the significant dynamical movement
information. Inspired by [63], [64], we capture the dense point
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trajectories tra = {tra1, tra2, ...traM} for a sequence of
frames, where M is the number of trajectories. And we set the
maximum length of the trajectory as 15 frames. Furthermore,
we follow the distance metric in [63] to measure the similarity
between trajectory pairs in terms of temporal interval and
spatial position. Then we partition all the detected trajectories
into groups by computing the affinity matrix between each
trajectory pair and utilizing a graph clustering method [63].
Given a video, we can obtain m clusters. We assume the i-th
trajectory cluster which contains L trajectories as tra(i) =
{trai1, ..., trail}. And defining each trajectory as a posi-
tion point sequence trail = {(x1il, y1il, z1il), ..., (xTil , yTil , zTil )},
where (xtil, y

t
il, z

t
il) is the 3D coordinates of the t-th point in

trajectory trail, and T is the time step of trajectory.
Then we employ convolutional neural networks (CNN)

to obtain the trajectory-pooled deep-convolutional represen-
tations [65]. We input each frame to the CNN, and obtain a
feature map of size H ×W × N , where H , W and N are
the number of height, width and channel, respectively. Finally,
we achieve an overall feature map C ∈ RH×W×T×N through
concatenating all the feature maps of the video, where T is the
length of the video. Then, a trajectory point can be represented
with coordinates (xt, yt, zt) (center at (r×xt, r×yt, r×zt) in
the feature map, where r denotes the map size ration w.r.t the
input size). Thus, the averaged feature of trail is formulated
as the following:

Ftrail
=

1

T

T∑
t=1

C(r × xtil, r × ytil, r × ztil), (3)

and the representation of the trajectory cluster is computed via
mean pooling of all trajectory features in the same cluster:

Ftrai =
1

L

L∑
l=1

Ftrail
. (4)

For a given video, we extract m trajectory clus-
ters and the visual feature of them can be defined as
{Ftra1

, Ftra2
, · · · , Ftram

}. Then we adopt the attention mech-
anism in the encoder network (will be described in III-D) to
formulate the overall trajectory feature vector Ftra:

Ftra =

m∑
i=1

{Attention Weight} · Ftrai
. (5)

C. Group Relationship Module

Since a wealth of contextual information are contained in
the inter-player relationship, only analyzing individual actions
is insufficient for understanding sports videos. Therefore, we
design a group relationship module by constructing a scene
graph [66] to model team-level interaction representations
between players, and encode the relation-aware features.

According to aforementioned approach in III-B1, given n
detected players through Faster R-CNN [58], n × (n − 1)
player pairs can be obtained. We concatenate two types of
features of the player pair, i.e., appearance feature and spatial
feature, to describe the visual relationship in each frame. The
appearance representation for visual relationship is formulated
by generating an enclosing bounding box to cover player

Fig. 4. Illustration of group relationship module in our framework. We firstly
employ the Faster R-CNN [58] to obtain a collection of player bounding boxes
in a frame. Then, a scene graph is constructed of which the vertex and edge
refer to player and their semantic relationship, respectively. Finally, a Graph
Convolutional Networks (GCN) is adopted to encode all the edge features
with a gate function.

pair with a small margin. While the spatial representation
is formulated by relative positions and sizes of object pairs,
which is robust and insensitive to the change of illumination
and occlusion. We encode a 5-dimensional vector as spatial
representation xspatial = [xmin

WI
, ymin

HI
, xmax

WI
, ymax

HI
, Sb

SI
], where

[xmin, ymin, xmax, ymax] and Sb are bounding box coordi-
nates and area size of detected region b, respectively. WI , HI

and SI are width, height and area size of image I , respectively.

As depicted in Figure 4, we employ a Graph Convolutional
Network (GCN) [67] as the encoder of group relationship
module, which is often leveraged to refine the representation
of each image region and their interaction. Then, all of
the encoded region features are fed into an attention-based
LSTM network, which assigns different important weights
to each region in a frame. Inspired by recent methods on
visual relationship detection [68], [69], we predict the semantic
relation between players depending on the union bounding box
that is able to cover the two players. Specifically, we split all
the players into different groups, e.g., choosing two players or
three players in a group. As an example, we group K players
in a frame into K × (K − 1) player pairs. For the reason that
accumulating the representation of all connected edges is not
a favorable idea, we incorporate an edge-wise gate function
into GCN to determine different weight of each edge.

In particular, we construct a scene graph [46], [69], [70]
G =< V,E > by forming all the detected object bounding
boxes in each frame to model visual relationship with ob-
ject pairs, in which V and E are vertex set and edge set,
respectively. In the graph G, each node corresponds to a
detected object, each edge denotes the interactive relationship.
The representation of each edge in the scene graph can be
formulated as the following:
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feij = ρ(
∑

(i,j)∈V

g<i,j>(fvi , fvj )(U · feij + b)),

g<i,j>(fvi , fvj ) = σ(Ũ · [fvi , fvj ] + b̃),

(6)

where feij , fvi , and fvj denote the feature of edge
eij (i.e., relationship region covering node vi and node vj),
node vi, and node vj , respectively. Meanwhile, g<i,j> repre-
sents the gate function, σ is the logistic sigmoid function, ρ
denotes an activation function (e.g., ReLU), and [·, ·] refers to
the concatenation operation. U and Ũ are the transformation
matrices of each edge between node vi and vj to be trained
in GCN, b and b̃ are the biases. Finally, defining NE as the
total number of edges in a frame, the merged relationship
representation Frel of all the edge features can be achieved
with attention mechanism (will be described in III-D) as the
following:

Frel =

NE∑
(i,j)∈V

{Attention Weight} · feij . (7)

D. Encoder-Decoder with Attention Mechanism

We follow the widely-adopted encoder-decoder framework
for video captioning. However, the traditional LSTM-based
encoder-decoder used in previous video captioning methods
is difficult to model long-time dependency and generate long
sentences. For the task of sports video captioning, the goal is
to generate paragraph description rather than single sentence
caption, which stresses on representing wealthy contextual
information and relationships between generated sentences.
Therefore, as illustrate in Figure 2, we propose a hierarchical
Bi-directional LSTMs as encoder-decoder in our proposed
framework to address the problem following [8], [26]. In
our proposed encoder, we leverage two-layer Bi-directional
LSTMs to fuse the motion representation, group relationship
feature and frame feature from the given video, resulting
in encoding the input video features into a sequence of
jointly latent vectors. While we employ another two-layer Bi-
directional LSTMs as our decoder, of which the first layer is
utilized to generate single word only based on the current state,
and the second layer can preserve more contextual information
by taking the state of previous generated sentences as input.

In our work, the LSTM based encoder takes attentive
motion representation (i.e., pose attribute feature Fpose att and
trajectory clustering feature Ftra), group relationship feature
Frel and frame feature Fframe as input, which would be
concatenated to formulate total representation Ft in the t-th
frame. The updating procedure in the encoder is formulated
as

ht = Encoder(ht−1, Ft),

Ft = [Fpose att, Ftra, Frel, Fframe],
(8)

where h denotes the hidden state of LSTM in the encoder, Ft

refers to the input embedding representations, and [·] denotes
concatenation operation.

The decoder takes the encoded representation as input, then
sequentially produce the output vector, which denotes the
predicted word at each time step. At each time step t, the
LSTM updates its hidden state ht and output yt based on its
previous hidden state ht−1 and output yt−1 and the encoded
embedding F , as the following:

[
yt
ht
] = Decoder(ht−1, yt−1, F ). (9)

Next, we will introduce the attention mechanism in the
encoder-decoder network.

Attention Mechanism Conventional methods (e.g., mean
pooling operation) always ignore the importance of motion
information for video captioning, of which the key player often
plays the most remarkable role in the group event. Hence, we
adopt a soft attention model to obtain dynamic weighted sum
of the pose attribute vector, trajectory cluster representation
and group relationship feature (described in Sec III-B1, III-B2
and III-C). Given the encoded embedding F , we denote Fi ∈
{F1, ..., Fn} as the feature of the i-th players, i-th trajectory
clusters, or the i-th relationship edge in the scene graph, where
n is the number of players, trajectory clusters or edges. We
feed them to a single linear transform layer followed by a
softmax function to calculate the attention distribution over
Fi, and define sti = (st1, ..., s

t
n)

T as the importance score of
the i-th player, i-th trajectory cluster or i-th edge on the frame:

sti = Us tanh(WfsFi +Whsh
s
t−1 + bs), (10)

where Us, Wfs, Whs are the training parameters, and bs is the
bias vector. hst−1 is the hidden variable from an LSTM unit.
Then the attention weight is computed as a normalization of
the scores:

αt
i =

exp(sti)∑n
i=1 exp(s

t
i)
. (11)

After that, the visual feature at time t is computed by the
weighted sum of the frame features, i.e., F

′

t ,

F
′

t =

n∑
i=1

αt
iFi, (12)

where n denotes the number of players, trajectory clusters, or
relationship edges, αt

i is the attention weight of the i-th player,
the i-th trajectory cluster, or the i-th relationship edge at time
t. With the attention mechanism, the encoder-decoder is able
to focus on the salient trajectory movement, key player’s pose
information and crucial group relationship.

E. Description Generation Module

The goal of sports video captioning in our work is to
generate a paragraph including several word sequences to
describe a given video. To generate a sentence, the likelihood
of generating a word in the n-th sentence is formulated as the
following:

P (wn
t |s1:n−1, wn

t−1, Ft,W ), (13)

where s1:n−1 represents all the preceding sentences in the
paragraph, wn

t−1 means all the previous words in the n-
th sentence, Ft are the features that concatenate attentive
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motion representation and group relationship features in the
corresponding frames of the video, and W represents the
model parameters to be learned. Furthermore, we define the
overall loss function of generating the whole paragraph s1:N
as:

Lcap = −
N∑

n=1

Tn∑
t=1

logP (wn
t |s1:n−1, wn

1:t−1, Ft,W )/

N∑
n=1

Tn,

(14)
where N is the number of sentences in the paragraph, Tn is
the number of words in the n-th sentence.

IV. SPORTS VIDEO CAPTIONING DATASET

Sports Video Captioning Dataset-Volleyball (SVCDV) is a
new dataset introduced by us that focuses on sports captioning.
SVCDV has totally 55 videos with 4,830 short clips collected
from Youtube, which are mainly high-resolution broadcast
Olympic volleyball games. Specifically, the short clips are
segmented into different types of group activities, and each
short clips has more than 50 frames. It is annotated based
on the Volleyball Dataset [48] that is collected to address
group activity recognition issue especially. We annotated nat-
ural language description of player action and group activity
happened in each video, and each sentence with respect to
one action or movement. Furthermore, SVCDV has totally
44,436 sentences, of which each video clip has 9.2 sentences
on average. Meanwhile, the average sentences per second is
0.366, verbs per sentence is 1.72, and verb ratio is 16.2%
in the SVCDV dataset, which are all more than that in other
current video captioning datasets (e.g., MSVD [3], [9], MSR-
VTT [71], ActivityNet [26]). It demonstrates that SVCDV is
very suitable for sports video captioning task. In addition,
each player is labeled with a bounding box and one of the
nine action labels: waiting, setting, digging, falling, spiking,
blocking, jumping, moving and standing. The whole frame is
annotated with one of the eight group activity labels: right set,
right spike, right pass, right winpoint, left winpoint, left pass,
left spike and left set. These labels can be utilized for individual
pose attribute learning and group relationship modeling. In
experiments, we split the dataset into training, validation and
testing sets of 65%, 5%, 30%, corresponding to 3,140, 241
and 1,449 video clips, respectively.

V. EXPERIMENTS

In this section, we conduct extensive experiments in terms
of three tasks, i.e., general video captioning, dense-video
captioning, and sports video captioning, to fully demonstrate
the effectiveness of our approach on four public benchmark
datasets. We select MSVD Dataset and MSR-VTT Dataset
for general video captioning, ActivityNet Captions Dataset
for dense-video captioning, and Sports Video Captioning
Dataset-Volleyball for sports video captioning. In the fol-
lowing, we firstly introduce the datasets, evaluation metrics
and implementation details in brief. Then we describe the
comparison methods, present the experimental results and
comprehensive analysis as follows.

A. Datasets and Metrics

Microsoft Video Description Dataset (MSVD) [3], [9]
contains 1,970 short videos collected from YouTube, of which
each video describes a single activity in a wide range of
topics (e.g., animals, music, actions and sports). In total, the
dataset consists of 80,839 sentences with about 40 English
descriptions per video clip, and each sentence has about 8
words. Following the same setting in [3], we select 1,200
videos as the training set, 100 for validation and 670 as the
testing set.

MSR Video-to-Text Dataset (MSR-VTT) [71] is the
largest general video captioning dataset in the size of sentences
and vocabulary. It contains 10,000 video clips with 41.2 hours
and 200,000 clip-sentence pairs in 20 categories (e.g., news,
sports). In average, 20 natural sentences annotated manually
for each video clip. The dataset is collected by using a com-
mercial video search engine and covers most of comprehensive
categories and diverse contents. Following the same setting
in [71], we split it into training, validation and testing sets of
65%, 5%, 30%, corresponding to 6,513, 497 and 2,990 clips,
respectively.

ActivityNet Captions Dataset [26] is introduced for dense
captioning events and actions in videos. It contains 20k videos
with 849 hours and more than 100k sentences collected from
ActivityNet [72]. The dataset focuses on long-term event
detection and the average length of videos is about 10 minutes,
of which each video annotated with 3.65 sentences. Each
sentence covers a unique segment of the video to describe
multiple events occurred. Each sentence has an average length
of 13.48 words, which follows a relatively normal distribution.
Following [26], all sentences are pre-processed to be a max-
imum length of 30 words, and we split it into the training,
validation and testing sets of 65%, 5%, 30%.

Metrics: We choose four popular metrics for the evaluation:
CIDEr (C) [73], BLEU (B) [74], METEOR (M) [75], and
ROUGE-L(R) [76], which are well correlated with human
perception. Concretely, CIDEr is used to measure the average
cosine similarity between n-grams in the generated description
and reference sentences. BLEU is based on the n-gram preci-
sion, and we choose 4-gram in our work following previous
works [74]. METEOR is computed based on the alignment
between generated sentences and reference. ROUGE-L mea-
sures the similarity based on the longest common subsequence
statistics between a candidate translation and a set of reference
translations. We adopt Microsoft COCO evaluation tools1 to
test the performance of video captioning, which has imple-
mented the metrics and evaluation functions.

B. Implementation Details

For video preprocessing, we sample equally-spaced 25
frames in each video, and resize them to 224 × 224 reso-
lution. A VGG-16 network [77] pre-trained on the ImageNet
dataset [60] is utilized to extract visual appearance features of
frames, and we select a sequence of 4096-dimensional feature
vectors produced by the fully connected layer fc7. Moreover,

1https://github.com/tylin/coco-caption
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we employ the pre-trained C3D [78] network on the Sports-1M
dataset [79] to model motion and short-term spatio-temporal
activity of videos, and we extract the activation vector from
fully-connected layer fc6-1 of C3D network from the input
video. Meanwhile, we employ optical flow features captured
by the motion network [61] pre-trained on the UCF101
dataset [62] for pose attribute detection.

For text preprocessing, we convert all words to lowercases
and split sentences into words and remove punctuation using
wordpunct-tokenizer method from NLTK toolbox2. Conse-
quently, we achieve a vocabulary with 12,593 words from
MSVD, 13,065 words from MSR-VTT, 13,560 words from
ActivityNet and 7,296 words from SVCDV, where the word
with the frequency less than 3 is removed. Furthermore, we
utilize the one-hot vector to represent each word in our work.

For pose attribute detection, we elaborate the details re-
garding how to set the bounding box’s size of each pose
part. When obtaining a set of body joint positions by human
pose detection in each frame, we firstly normalized them with
respect to the person size. Hence, the position of each keypoint
can be denoted as the relative offsets to the head in the
person bounding box, i.e. < dx, dy, arctan(dy/dx) >, where
“arctan(dy/dx)” refers to the orientations. For capturing
more contextual information of each body joint, we set a
padding parameter “lside” to crop more area of bounding
box. Then, given a collection of body joint position P =
{p1, p2, · · · , pn}, where pi =< dxi, dyi > refers to the
coordinate of the i-th keypoint, and n denotes the total number
of keypoints. To determine the bounding box’s size of each
body joint, i.e. left hand, right hand, upper body, bottom body
and full body, we can crop each bounding box based on the
corresponding coordinate of two points, i.e., top-left point and
bottom-right point, as the following:
Top-left point

< min(dx1, dx2, · · · , dxn)− lside,
max(dy1, dy2, · · · , dyn) + lside >,

(15)

Bottom-right point

< max(dx1, dx2, · · · , dxn) + lside,

min(dy1, dy2, · · · , dyn)− lside > .
(16)

Then, the position and size of each body part bounding box can
be determined based on top-left point and bottom-right point,
and each patch is resized to 224×224 pixels for matching the
input layer of pose attribute detection network. In practice, we
set “lside = 20” in our experiments.

For training our model, we add tag BOS and EOS to denote
the begin and end of each sentence, respectively, which is
aimed at making the length of sentences arbitrary. Then we
input the BOS into the video decoder to start generating video
descriptions. For pose attribute representation, we choose
256 and 50 most common words on UCF-101 and SVCDV
as general sports action attributes vocabulary and volleyball
professional attribute vocabulary, respectively. Then, we train
our VGG-16 based attribute prediction model and achieve the
final 306-way probabilities vector of attributes. The learning

2http://www.nltk.org

rates for training stage are set to 1 × 10−4, 1 × 10−4,
1 × 10−3, 1 × 10−4 and for MSVD, MSR-VTT, AcitvityNet
and SVCDV, respectively. The training batch size is set to
64 for MSVD/MSR-VTT/SVCDV, and 128 for ActivityNet.
Meanwhile, we adopt Dropout for regularization with prob-
ability 0.5 on the input and output of encoder LSTMs and
decoder LSTMs. For LSTMs in our model, the size of hidden
states are set to 1,024, and size of embedding representation
of video feature and words are set to 512. We select Adam
optimizer [80] to update all the parameters in our model. We
stop training our model until 200 epochs and the evaluation
metric does not improve on the validation set. In the testing,
we adopt the beam search strategy with the beam size 5. Our
model is implemented using the TensorFlow [81] library with
a single NVIDIA GTX 1080Ti GPU.

C. Compared Methods

In order to demonstrate the effectiveness of our proposed
approach, we compare our model with following state-of-the-
art methods: S2VT [6], LSTM-E [5], TA [7], HRNN [8],
HRNE [82], DenseCap [26]. Following the experimental set-
ting in [26], we compare existing video captioning models
using ground truth proposals. Specifically, S2VT uses stack
LSTMs in both encoder and decoder, and encodes a video
using an RNN; LSTM-E utilizes a visual-semantic embedding;
TA employs a temporal attention mechanism; HRNN uses a
hierarchical decoder to generate captions; DenseCap generates
multiple sentences and adopts a winner-take-all scheme to
generate the final results3. Since not all the papers report full
results, we only compare results on the test set. In addition, to
examine the importance of different modality features in our
proposed framework, we introduce three baseline models to
compare with our full model, i.e., “our baseline-1” only with
VGG feature [77], “our baseline-2” only with VGG [77] and
optical flow feature [61], “our baseline-3” only with VGG [77]
and C3D feature [78]. While our full model simultaneously
utilize three types of modality feature for video captioning,
i.e., VGG feature [77], optical flow feature [61] and C3D
representation [78].

D. Result and Analysis

Results on General Video Datasets: To evaluate the gener-
ality of our model, we conduct experiments on the MSVD and
MSR-VTT, which are both general video captioning datasets
covering multiple topics. The results and comparisons can be
found in Table I. As can be seen, the proposed method is
able to achieve competitive results. On the MSVD dataset, the
performance of our method is slightly no more 2% worse than
the state-of-the-art methods across all metrics. Meanwhile, the
performance of our model can get the second best on MSR-
VTT across most of metrics. The results imply that better fine-
grained motion representation and inter-object relationship
features can effectively enhance the performance of general
video captioning. Particularly, it is worth noting that our model

3In the experiments, the parameter settings of above-mentioned methods
are adopted from corresponding papers.
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TABLE I
PERFORMANCE COMPARISONS OF OUR FULL MODEL, BASELINE MODELS AND THE STATE-OF-THE-ART APPROACHES WITH DIFFERENT VIDEO FEATURES
AND BACKBONES ON MSVD/MSR-VTT/ACITIVTYNET DATASET. (V) DENOTES VGG16, (G) DENOTES GOOGLENET, (R) DENOTES RESNET-152, (C)

DENOTES C3D AND (O) DENOTES OPTICAL FLOW. “OURS W/O KNOWLEDGE” AND “OURS W/O RELATION” DENOTE OUR MODEL WITHOUT EXTRA
SPORTS KNOWLEDGE AND GROUP RELATIONSHIP MODULE, RESPECTIVELY. ALL RESULTS ARE CITED FROM CORRESPONDING PAPERS. THE BEST

PERFORMANCE IS HIGHLIGHTED IN BOLD.

Methods Modality MSVD MSR-VTT ActivityNet
B@1 B@2 B@3 B@4 M C B@4 M C B@1 B@2 B@3 B@4 M C

basic LSTM R 80.6 69.3 59.7 49.6 32.7 69.9 - - - - - - - - -
S2VT [6] V - - - - 29.2 - - - - - - - - - -
S2VT [6] V+O - - - - 29.8 - 31.4 25.7 35.2 - - - - - -
S2VT [6] C 73.5 59.3 48.2 36.9 29.8 48.6 31.4 25.7 35.2 20.4 9.0 4.6 2.6 7.9 21.0

LSTM-E [5] V 74.9 60.9 50.6 40.2 29.5 - - - - - - - - - -
LSTM-E [5] C 75.7 62.3 52.0 41.7 29.9 - - - - - - - - - -
LSTM-E [5] V+C 78.8 66.0 55.4 45.3 31.0 - - - - - - - - - -

TA [7] R 81.6 70.3 61.6 51.3 33.3 72.0 - - - - - - - - -
TA [7] V - - - - - - 35.6 25.4 - - - - - - -
TA [7] C 74.1 58.9 48.2 36.6 29.4 48.1 36.1 25.7 - - - - - - -
TA [7] G+C 80.0 64.7 52.6 42.2 29.6 51.7 - - - - - - - - -
TA [7] V+C - - - - - - 36.6 25.9 - - - - - - -

HRNN [8] V 77.3 64.5 54.6 44.3 31.1 62.1 - - - - - - - - -
HRNN [8] C 79.7 67.9 57.9 47.4 30.3 53.6 - - - 19.5 8.8 4.3 2.5 8.0 20.2
HRNN [8] V+C 81.5 70.4 60.4 49.9 32.6 65.8 - - 20.2 - - - - - -

HRNE [82] G 78.4 66.1 55.1 43.6 32.1 - - - - - - - - - -
HRNE+TA [82] G 79.2 66.3 55.1 43.8 33.1 - - - - - - - - - -
DenseCap [26] C - - - - - - - - - 26.5 13.5 7.2 4.0 9.5 24.6
Our baseline-1 V 77.6 64.9 55.7 46.5 30.9 63.2 33.9 25.1 29.7 21.2 10.6 5.9 2.7 8.2 21.5
Our baseline-2 V+O 78.2 66.2 56.9 47.3 31.5 65.6 34.6 25.3 30.6 21.9 11.2 6.2 3.1 8.5 22.2
Our baseline-3 V+C 79.9 68.6 58.9 49.1 32.1 69.2 35.7 25.5 32.1 23.6 11.7 6.9 3.9 9.1 22.9

Ours w/o knowledge V+C+O 80.7 69.5 60.7 50.5 32.7 69.6 36.2 25.6 33.5 25.3 12.9 7.5 4.2 9.7 23.7
Ours w/o relation V+C+O 80.9 69.6 61.0 50.7 33.1 70.2 36.5 25.7 33.8 25.9 13.2 7.7 4.5 9.8 24.2

Our full model V+C+O 81.2 69.7 61.3 50.9 33.5 70.3 36.7 25.9 33.9 26.6 13.9 8.2 4.9 9.9 24.6

can be easily integrated with the compared methods for general
video captioning. From the table, we find that S2YT performs
much worse than other models in the MSVD dataset since
it encodes long sequences of video by mean pooling. H-
RNN performs slightly better due to its attentive object-level
features. In addition, we have seen that utilizing a more pow-
erful or advanced representation can improve the performance,
thus some methods with ResNet features perform significantly
better than C3D features (e.g., TA with ResNet feature obtains
the best performance than that with other features on MSVD
dataset). Specifically, it should be pointed out that our method
focuses on sports video captioning and also has the ability for
general video captioning. Moreover, we illustrate in Figure 5
quite a few qualitative results, including example video clips
and corresponding description sentences generated by our
proposed model and the baseline method (i.e., S2VT [6] in
our experiments). As shown in Figure 5, we can see that our
proposed model is able to produce more accurate, reasonable,
logic language caption than the baseline. As an example, we
can find that our modal can accurately capture the salient
motion “kicking a soccer ball” in the top-left panel of the
figure, while the S2VT baseline fails to identify the detailed
individual action and only produces the sentence “playing the
soccer”. From the other three examples in the figure, we can
draw similar conclusions. Because the videos in these two
datasets have a small amount of group relationship, we mainly
analyze the effect of pose attribute detection and trajectory
clustering introduced in our model. We list the pose attributes
detected in the four examples which center on personal actions,
and also visualize the trajectory clusters that are assigned
higher attention weights. Clearly, our model can extract the
significant individual action and salient movement of person

accurately in the video clips, and generate more refined and
elaborate video description. Meanwhile, the semantic attributes
captured by our model can be regarded as a better advanced
semantic video features than low-level features in the task of
video captioning. For instance, in the down-right panel of the
figure, our method produces the caption “leaping high and
kicking the foot” by exactly detecting the pose attributes “leap”
and “kick” from the video clip, and precisely attend to the
most significant trajectory clusters of “leaping” and “kicking”
action. These better results demonstrate the effectiveness of
motion representation module in our framework.

Results on ActivityNet Dataset: ActivityNet Captioning
Dataset focuses on describing human actions in videos. We
report results using action proposal module in our proposed
model for segmenting the video and testing first three sen-
tences in each video, because almost all the videos in the
dataset contain at least three sentences. As noticed in Table I,
our approach achieves the best performance in terms of all
the metrics, such as BLEU@3, BLEU@4 and METEOR.
Moreover, we observe that using attentive player’s motion
representation and group relationship features in our model
achieves superior performance. In contrast, several state-of-
the-art methods (e.g., HRNN) encode the whole video features
by mean pooling, which lost more motion details of player.
Although DenseCap adopts action proposal and attention
model, they cannot capture more pose-based motion details.
Furthermore, we are aware that integrating optical flow infor-
mation with RGB video can further improve the accuracies of
action recognition and video captioning. And the performance
would be further enhanced across all evaluation metrics by
combining better video features and player’s motion features.
In addition, due to the limit of quantitative metrics, we show
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Fig. 5. Qualitative video captioning examples on the MSVD dataset, including the sample video clips and their corresponding captions produced by our
proposed method, S2VT [6] and Ground Truth. Moreover, the detected pose semantic attributes are listed with their corresponding possibility, and the attended
trajectory clusters are visualized and marked in the yellow bounding box. The highlights in red denote the important actions and activities in a sports event.

several qualitative examples in Figure 6. As depicted in the
figure, it is obvious to see that our proposed framework can
detect significant high-level pose semantic attributes to guide
the video caption production. Given an example, the top panel
of the figure, our model can generate descriptions with more
fine-grained actions, e.g., “handing a racket” and “hitting the
ball” than the sentences produced by S2VT method. It can be
attributed to that the pose attributes “handing”, “moving” and
“hitting” are precisely detected and directly employed to guide
the captioning process in our proposed framework. Similarly,
we can see from the down panel of the figure, our model
can produce more descriptive and reasonable text sentences
with crucial advanced semantic attributes, e.g., “swimming”,
“holding”, “throwing” and “scoring”, which enrich the created
description with more fine-grained contents. Meanwhile, the
attentive trajectory can help our model to capture the critical
action in the video, e.g., “holding and throwing the volleyball”.
In addition, compared with the sentences produced by the
baseline method S2VT, our model can generate more com-
prehensive details to describe the relationship between each
person appeared in the videos, such as the terms of “with his
friend” and “with their teammates”, which can be attributed
to the effectiveness of the group relationship module in our
framework.

Results on SVCDV Dataset: We evaluate our method on
the new SVCDV dataset that mainly contains sports videos.
Table II reports the results and comparisons with the state-of-
the-art and baseline methods. As it can be noticed in Table II,
our approach improves plain techniques and achieves the state-
of-the-art performance on SVCDV. We choose S2VT model
as a baseline with only global video feature without attentive
motion representation and group relationship modeling. The
baseline achieves the worst performance that deteriorates our
proposed framework by about 5% across all metrics. It obvi-
ously manifests that introducing attentive motion representa-
tion and group relationship modeling is rewarding to improve
the performance of sports video captioning. Although HRNN
and DenseCap have the ability to extract context information
from the video, more accurate articulate action information is

Fig. 6. Qualitative dense-video captioning results generated by our proposed
method, S2VT [6], and Ground Truth on the ActivityNet dataset. The
captions need to temporally localize and describe multiple events occurring
simultaneously or overlap in time of a video. The highlights in red denote the
important actions and activities in a sports event.

neglected. It strongly suggests that our framework is capable
of generating sentences with more fine-grained motion repre-
sentation and group relationship. Figure 7 illustrates quite a
few qualitative captioning results on the test data of SVCDV
datasets. As can be seen, our framework can capture more
fine-grained action and activity details in the generated text
description, and in more accordance with the ground truth.
We show quite a few pose attributes detection results for
the testing video clips, suggesting pose-based features and
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Ground Truth: 
Now the team oo the left side is trying to set up an offense, while the team oo the right side 
is ready to defend. Oo the left, there is a player setting the ball to her teammate, and a 
player is falling to the ground. Her teammate is moving and trying to spike. And another 
teammates are standing to cooperate "�th her. Meanwhile, players are going to stand and 
ready to defend oo the right side. 

Detected PoseAttributes: 
stand, move, set, fall , spike 

Our Captioning: 
Now the team oo the left side is attacking, while the team oo the right side is defending. Oo 
the left, a player is jumping and setting the ball to her teammate. His teammate is falling t 
the ground. A player is moving to attack. Another teammates are standing to cooperate. 
Meanwhile, there are two players going to block oo the right side. And anther teammates 
are standing. 

Truth: 
Now the team oo the left side is losing point, while the team oo the right side is winning 
point. Players oo the left side are all standing. Meanwhile, players oo the right side are 
moving to each other and celebrating a victory. 

[ Detected PoseAttributes:

• stand, move
Our Captioning:
Now the team oo the left side is losing point, while the team oo the left side is winning
point. Oo the left, there is a player moving, and another teammates are standing.
Meanwhile, players oo the right side are going to move and celebrating a victory.

Fig. 7. Qualitative video captioning results on the SVCDV dataset for a specific video clips. The highlights in red denote the important actions and activities
in a sports event.

TABLE II
PERFORMANCE COMPARISONS OF OUR METHOD AND THE

STATE-OF-THE-ART APPROACHES ON THE SVCDV DATASET AND THE
COMPONENTS ANALYSIS OF OUR FRAMEWORK. “W/O” MEANS OUR
MODEL WITHOUT SPECIFIC MODULE. THE BEST PERFORMANCE IS

HIGHLIGHTED IN BOLD.

Methods B@4 R M C
S2VT [6] 25.62 45.26 21.55 1.96
HRNN [8] 24.53 44.97 20.96 2.05
DenseCap [26] 26.77 46.78 23.33 2.29
Ours w/o motion 25.71 45.12 21.56 1.88
Ours w/o pose 26.12 45.67 22.31 2.02
Ours w/o trajectory 27.25 46.52 22.79 2.15
Ours w/o relation 27.59 46.76 23.55 2.31
Ours w/o attention 28.38 47.78 23.79 2.36
Ours w/o knowledge 30.69 50.25 25.53 2.72
Ours full model 31.76 51.62 26.07 2.91

their corresponding semantic attributes can denote the accurate
action and skeleton movement of players, and further improve
the captioning performance with more specific and refined
action information. Meanwhile, it is beneficial that such se-
mantic attributes introduced into the model can be deemed as
extra professional sports knowledge. Moreover, the attended
trajectory clusters detected by our model, which highlight the
significant motion of the crucial players and demonstrate their
necessity in our motion representation module for improved
the performance of fine-grained sports video captioning. How-
ever, our generated caption fails to describe a few of exactly
players’ actions or activities in several cases (e.g., ’blocking’
is mistaken as ’standing’), due to that several actions in the
video share high similarities and occlusions in the video. More
training data and advanced action detection model can be
beneficial to better distinguishing these actions.

Human Evaluation of Sports Video Captioning: Because
the conventional evaluation metrics cannot assess the results
completely and accurately, we further conduct a human eval-
uation of sports video captioning on SVCDV to compare
our method with the state-of-the-art approaches. We invite

TABLE III
HUAMAN EVALUATION OF SPORTS VIDEO CAPTIONING WITH OUR

METHOD AND THE STATE-OF-THE-ART APPROACHES ON THE SVCDV
DATASET. HIGHER SCORE IS BETTER JUDGING BY HUMAN VOLUNTEERS.

THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD.

Methods Q1 Q2 Q3
S2VT [6] 6.272 5.531 5.725
HRNN [8] 5.953 4.976 4.623
DenseCap [26] 6.525 5.767 5.969
Ours model 6.725 6.692 6.936

20 volunteers in our experiments to rank the produced 1,000
description sentences from one to ten scores corresponding
from worst to best w.r.t three criteria, i.e., (1) Q1: whether
the sentences generated is reasonable and readability? (2) Q2:
whether the sentences generated can describe the sports event,
crucial player’s action, group activity and relationship accu-
rately? (3) Q3: whether the sentences generated can help you
to understand the match completely and professionally? As
illustrated in Table III, the averaged scores of all volunteers ap-
parently indicate that our model achieves the best performance
across all three criteria. Specifically, our model obtains the
scores 6.725/6.792/6.936 in terms of Q1/Q2/Q3, respectively,
improving over the best state-of-the-art DenseCap [26] by
about 0.2, 0.7, and 1.0. The relative more improved results w.r.t
Q2/Q3 also demonstrate that our model focuses on generating
fine-grained text sentences for a sports match, and has the
capability to produce the complete description for significant
sports highlights, player’s action and group activity. It suggests
that to some extent our approach can help people to understand
the sports game, especially be utilized to assist the blind person
in the future.

E. Efficiency Analysis

To analyze the efficiency of our proposed approach, we
report the mean execution time of our framework and Dense-
Cap [26] on Table IV in terms of sports video captioning on
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TABLE IV
EFFICIENCY COMPARISONS OF OUR METHOD AND THE STATE-OF-THE-ART

APPROACH ON THE SVCDV DATASET. “OURS W/ PICKING” REFERS TO
OUR MODEL INCORPORATED WITH THE METHOD [32]. THE BEST

PERFORMANCE IS HIGHLIGHTED IN BOLD.

Methods B@4 R M C time(s)
DenseCap [26] 26.77 46.78 23.33 2.29 15.6
Ours full model 31.76 51.62 26.07 2.91 22.9
Ours w/ PickNet [32] 31.67 51.69 25.73 2.93 17.3

SVCDV. From the table, we can observe that our proposed
method need more execution time than DenseCap, because our
proposed framework require three types of video representa-
tion as input, i.e., pose attribute feature, trajectory clustering
feature, and group relationship feature. While DenseCap only
need C3D feature of the given video sequence as input. Al-
though our proposed framework achieves better performance
than DenseCap by utilizing the well-designed video represen-
tations for sports video captioning, extracting these specific
features through several sub-nets in our model, e.g., Faster
R-CNN, P-CNN, and Hierarchical Encoder-Decoder are ex-
ceedingly time consuming. How to get the trade-off balance
between execution time and performance of generating cap-
tions is an important yet challenging issue. Limited work has
devoted to this topic. Therefore, we will leave this as our future
work. Furthermore, we examine the efficiency of our model
incorporated with the method in [32]. The idea of the method
in [32] is that designing a PickNet to select informative frames
for video captioning in a reinforcement learning way. We
incorporate the PickNet in our framework in the experiment,
and report the performance in Table IV. From the table, we
can see that our model with PickNet can effectively reduce
the execution time from 22.9s to 17.3s, which slightly slow
less than 2s compared with DenseCap. Meanwhile, it achieves
competitive captioning performance compared with our full
model. It denotes that the strategy in [32] by choosing import
actions and selecting informative frames from the video is
extremely promising and helpful to improve the efficiency of
sports video captioning.

F. Ablation Study

To demonstrate the effectiveness of each component in our
proposed model (i.e., motion representation module, group re-
lationship module, hierarchical encoder-decoder with attention
mechanism, extra sports knowledge and different modality
features), we have performed the ablative experiments for
analysis.

Motion Representation Module. As can be seen in Ta-
ble II, we firstly evaluate how much Motion Representation
Module can help sports video captioning. In our work, we
utilize both pose attribute feature and trajectory clustering
feature as our motion representation. As a comparison, we
only extract the whole video features through C3D model
and LSTM (i.e., Ours w/o motion in Table II), which ob-
tains the worst performance. It is indicative of the motion
representation module is the most paramount component in
our model, and the performance would drop drastically if
missing this module (i.e., performances degrade more than

5% across all the metrics compared with the full model),
because the raw video feature cannot extract more individual
motion details from each frame. Comparing pose attribute
feature with trajectory clustering, our method without pose
attribute feature achieves worse performance than that without
trajectory clustering. Obviously, it proves the pose attribute
feature is more crucial than trajectory cluster, because the
detected attributes can capture more semantic information to
describe individual player motion. As depicted in Figure 8,
we show an example of qualitative sports captioning results
generated by our proposed full model, our model without
attentive motion representation (referred to W/O Motion), our
model without group relationship module (referred to W/O
Group), and Ground Truth on SVCDV in a dense-captioning
manner. Specifically, the description performed by our full
model can capture the accurate crucial fine-grained individual
action, e.g., setting/spiking/digging/blocking in the Figure 8.
While the sentences created by our model W/O Motion only
extract a part of individual action and inaccurate action,
e.g., missing “blocking” and “spiking” in the third and fourth
row, mistaking “setting” by “digging” in the second row. In
summary, the proposed motion representation module is very
beneficial to generate fine-grained sports video descriptions.

Group Relationship Module. In our framework, we add the
GCN based Group Relationship Module to model team-level
interaction among players, rather than replacing trajectory
clustering. In fact, we still adopt the trajectory clustering in
Motion Representation Module that is capable of capturing
player-level dynamic movement information. While our newly
proposed Group Relationship Module focuses on encoding the
relation-aware feature of sports teams. We perform the ablation
study to demonstrate the effectiveness of GCN, namely the
proposed Group Relationship Module in our framework. In
the ablation study, we mainly compare the performance of
our full model with our model without Group Relationship
Module (“Ours w/o Relation”). Table I and Table II illustrate
the quantitative results on MSVD/MSR-VTT/ActivityNet and
SVCDV, respectively. As shown in Table I, we can find
that our full model incorporated with Group Relationship
Module obtains slight improvement (less than 1% across all
metrics) compared with our model without Relation. Because
the videos of MSVD/MSR-VTT/ActivityNet generally contain
single or few people so that the group relationship representa-
tion cannot make much difference for captioning performance.
In contrast, as shown in Table II, our full model with Group
Relationship Module can significantly outperform our model
without Relation (“Ours w/o relation”) on SVCDV dataset.
For example, our full model achieves a gain of more than
4% w.r.t BLEU@4 and ROUGE-L, and nearly 3% in terms
of METEOR. It can be concluded that our proposed GCN
based Group Relationship Module can effectively improve the
performance of sports video captioning, especially for team
sports (such as the volleyball games in SVCDV). Moreover,
we can see a deteriorating of performance when we get rid
of Group Relationship Module in our framework (i.e., perfor-
mances degrade more than 3% across all the metrics compared
with the full model). It is the truth that much context and
interactive information exist in sports games, and the scene
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Fig. 8. Qualitative sports captioning results generated by our proposed full model, our model without attentive motion representation (denoted as W/O
Motion), our model without group relationship module (denoted as W/O Group), and Ground Truth on SVCDV in a dense-captioning manner. The attentive
important individual action is marked in the yellow bounding box. The highlights in red denote important actions and activities in a sports event.

graph constructed in our module is able to dynamically dis-
cover and model them for elaborate captioning. In addition,
Figure 8 illustrates a few of qualitative sports video captioning
results. Compared with the generated description of our model
without Group Relationship Module (W/O Group), our full
model generates more reasonable and semantically informative
captions that describe the interaction relationship between
players, such as “a player is waiting to cooperate with her
teammate” and “passing the ball to her teammate”. As an
example, in the second row of the Figure 8, the sentences
generated by our model W/O Group only capture the players’
action (setting and moving), missing the cooperation between
two teammates, i.e., “a player is trying to pass the ball to
her teammate”. As we all know, team-level sports are the
most popular and remarkable sports events, such as basket-
ball and soccer. However, most of previous methods directly
adopt conventional video captioning approach and neglect the
relationship between players, which is arduous to address the
task of sports video captioning. For such team sports events,
various group-level movements and actions of players can
make tactics and the game change frequently and dramatically.
Hence, the proposed Group Relationship Module models the
interaction between players by a scene graph and captures
relation-aware representation, which is rewarding to sports
video captioning.

Hierarchical Encoder-Decoder Architecture with Atten-
tion Mechanism. We perform the experiment to demon-
strate the effectiveness of our proposed Hierarchical Encoder-
Decoder Architecture. Because the proposed framework is
mainly focus on generating paragraph description, we choose
S2VT [6] that only utilizes one-layer RNN as the compared
method on ActivityNet and SVCDV. As shown in Table I and
Table II, we can clearly see our full model significantly out-
performs S2VT across all the metrics, e.g., our model achieves

a gain of nearly 6% w.r.t BELU@4, METEOR and ROUGE-L
on SVCDV, suggesting that our proposed hierarchical LSTMs
is able to preserve the long-dependency of video streams
and generate better descriptions than the single layer RNN
model, i.e., S2VT. It also denotes that two-layer LSTM based
encoder and decoder can capture more context representation
from videos and give coherent paragraph captions. Especially,
we can see significant improvements by introducing attention
mechanism into our encoder-decoder architecture, denoting
that attention mechanism is exceedingly useful for sports
video captioning. Since the key players invariably play a
considerable role for the sports event, as shown in the yellow
boxes in Figure 8. Meanwhile, it also reveals that fusing
features of video by mean-pooling is not a wise choice.

Importance of Extra Sports Knowledge. To exploit the
effectiveness of incorporating extra professional sports knowl-
edge into our framework, we perform the ablative experiments
and analysis. Table I and Table II illustrate the quantitative
results on MSVD/MSR-VTT/ActivityNet and SVCDV, respec-
tively. From the tables, we can clearly observe that our full
model incorporated with extra sports knowledge outperforms
our model without professional knowledge and other baseline
models. Specifically, our full model with knowledge can obtain
slightly better performance on MSVD and MSR-VTT, because
these two datasets contain a wide variety of different videos
rather than mainly sports videos. While our model with sports
knowledge can obviously improve the performance of our
model without knowledge (“Ours w/o knowledge”) by about
1% w.r.t BLEU@1 and BLEU@2 on Activity, and more than
1% w.r.t BLEU@4, ROUGE-L and CIDEr on SVCDV. The
reason why our model with extra knowledge can improve the
performance on such sports and action-centered video datasets
is that our pose attribute detection can map human poses to
semantic attributes vector, and these attributes learned from
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sports textual data are beneficial to sports video captioning.
Semantic attributes can be regarded as the extra professional
sports knowledge collected from the datasets and Internet,
and a bridge between visual data and textual data. Such
extra knowledge can significantly enrich the vocabulary in the
generated description, and can be flexibly applied in different
sports events, e.g., basketball and baseball.

Effect of Different Modality Features. Moreover, we also
conduct further experiments to examine the effect of different
modality features, i.e. VGG, optical flow and C3D as the input
features of our framework. The experimental results can be
found in the Table I. Note that in our proposed framework, we
adopt VGG-16 pre-trained on the ImageNet as our backbone
to extract visual appearance features, which is mainly used
in pose attribute detection and trajectory clustering in Motion
Representation Module and Group Relationship Module. We
adopt VGG-16 for fair comparisons with the state-of-the-art
methods since most of them employ VGG-16. Furthermore,
we employ optical flow features captured by the motion
network [61] pre-trained on the UCF101 dataset [62], which
is utilized in pose attribute detection to enhance the temporal
representation of human pose. In addition, we leverage the
C3D model [78] pre-trained on the Sports-1M dataset [79]
to extract the video temporal representation, which is used
in Action Proposal Module as preprocessing and Encoder-
Decoder. Especially, we totally adopt four types of features,
i.e. pose attribute feature Fpose att (optical flow and VGG),
trajectory clustering features Ftra (VGG), group relationship
feature Frel (VGG) and frame feature Fframe (VGG and C3D)
as input of Encoder-Decoder in our full model. Therefore, the
VGG feature is the main representation used in each module
in our proposed framework, and optical flow and C3D feature
are optional representations utilized in certain modules for
improved performance. Depended on the above discussion,
we introduce three baseline models to compare with our full
model: “our baseline-1” only with VGG feature, “our baseline-
2” only with VGG and optical flow feature, “our baseline-
3” only with VGG and C3D feature. As shown in Table I,
we can apparently find that our full model with three types
of modality feature (VGG+C3D+Optical Flow) can achieve
the best performance compared with other baseline models,
suggesting more modality features can be encoded as rich
informative representations and hence resulting in better video
captioning. Compared to our baseline-1, our baseline-2 can
improve the performance by about 1%∼2% in terms of all
metrics on MSVD/MSR-VTT/ActivityNet, demonstrating the
optical flow representation is beneficial to capturing more
consistently temporal information of human pose and lead-
ing to better captioning results. Meanwhile, the performance
of our baseline-3 is clearly superior to our baseline-1 and
baseline-2, which should be attributed to the effectiveness
and importance of C3D features used in Action Proposal
Module and Encoder-Decoder. For example, our baseline-3
outperforms our baseline-1 about 2%∼6% in terms of all
metrics on MSVD. It denotes that C3D representation can
preserve more temporally sequential information from a clip of
video. Above all, it is indispensable to simultaneously employ
visual appearance features of each frame, optical flow and 3D

convolutional representations of video clips for the task of
video captioning.

VI. CONCLUSION

In this study, we propose a novel deep framework for
sports video captioning based on jointly capturing attentive
motion representation and group relationship feature. Through
extracting human pose attribute, trajectory clustering, and
group relationship representation, our model is capable of
describing more fine-grained information corresponding to
dynamic movement of players/teams and various interactions
in a sports game. We have evaluated our model on three
widely-adopted public datasets and a newly introduced Sports
Video Captioning Dataset-Volleyball. The experimental results
have demonstrated the effectiveness of our framework that
achieves competitive or superior performance compared with
the current state-of-the-art models.
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