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Abstract—In real life, group activity recognition plays a
significant and fundamental role in a variety of applications,
e.g. sports video analysis, abnormal behavior detection and
intelligent surveillance. In a complex dynamic scene, a crucial yet
challenging issue is how to better model the spatio-temporal con-
textual information and inter-person relationship. In the paper,
we present a novel attentive semantic recurrent neural network
(RNN), namely stagNet, for understanding group activities and
individual actions in videos, by combining the spatio-temporal
attention mechanism and semantic graph modeling. Specifically,
a structured semantic graph is explicitly modeled to express the
spatial contextual content of the whole scene, which is afterward
further incorporated with the temporal factor through structural-
RNN. By virtue of the ‘factor sharing’ and ‘message passing’
mechanisms, our stagNet is capable of extracting discriminative
and informative spatio-temporal representations and capturing
inter-person relationships. Moreover, we adopt a spatio-temporal
attention model to focus on key persons/frames for improved
recognition performance. Besides, a body-region attention and a
global-part feature pooling strategy are devised for individual ac-
tion recognition. In experiments, four widely-used public datasets
are adopted for performance evaluation, and the extensive results
demonstrate the superiority and effectiveness of our method.

Index Terms—Group Activity Recognition, Action Recognition,
Spatio-temporal Attention, RNN, Semantic Graph, Scene Under-
standing.

I. INTRODUCTION

UNDERSTANDING dynamic scenes in sports games and
surveillance videos encompasses a wide range of ap-

plications, like sports team tactics analysis and abnormal
behavior detection. The way to recognize/understand group or
cluster activities within a scene, such as ‘right spiking’ group
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Fig. 1. Group activity understanding via a semantic graph. Using the semantic
mapping, individual actions and group activity are shown on the semantic
graph, which reasons inter-group relationship. Our model can also attend to
the important player (with a red star) who is acting ‘spiking’ via the attention
mechanism.

activity occurred in a volleyball game [1] (see Fig. 1), is a vital
yet challenging problem, because of cluttered backgrounds and
mixed-up relationships, etc. To recognize group activity under
a variety of scenarios, the contextual information ought to be
taken into thought, especially the relationship or connection
between actions of each person, interaction of person and
objects, position of person and scene. In this paper, we
concentrate on the group activity analysis and propose a novel
deep model to inference the interaction between people in a
scene for group activity and individual action recognition.

A mass of efforts [2]–[10] are devoted to handle the
above issue in the computer vision community. Most of
those methods try to capture spatio-temporal relations between
individuals [1], [11], [12] that are considered as important cues
for group activity and individual action recognition. Funda-
mentally, they choose the representation of visual appearance
or the representation of spatial and temporal movement, for
describing the dynamic interaction between people. These
traditional approaches can be summarized as a mixture of
hand-crafted features and probabilistic graph models. Hand-
crafted features introduced in such issue consist of motion
boundary histograms (MBH) [13], histogram of gradients
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(HOG) [14], the cardinality kernel [15], etc. Markov Ran-
dom Fields (MRFs) [16] and Conditional Random Fields
(CRFs) [17] also have been utilized to simulate the inter-object
relationships.

An obvious limitation of the above-mentioned approaches is
that the low-level features fall short of representing advanced
group activities. With the success of convolutional neural
networks (ConvNets) [18]–[20] in several computer vision
tasks, deep feature representations have demonstrated their
capabilities in representing advanced visual appearance. How-
ever, typical ConvNets regard single frame of a video as input
and output a holistic feature vector by average pooling, hence
spatial and temporal relations between consecutive frames
cannot be discerned. The spatio-temporal relations [1], [11],
[12] comprise the spatial appearance and temporal action of
each person and their interaction. Recurrent Neural Networks
(RNNs) [21], [22] have the power to represent dynamic
temporal actions from the sequential data with the temporal
features. Therefore, it is extremely fascinating to explore an
RNN based network for capturing the crucial spatio-temporal
contextual information.

Moreover, automatically describing the semantic contents
within the scene is rewarding to better understanding the
overall hierarchical structure of the scene (e.g. sports games
and surveillance videos). However, this task is extremely trou-
blesome, because the semantic description not only captures
the individual action, but also completely expresses how these
persons relate to each other and how the whole group event
happens. If the above RNN based network also can describe
the semantic contents of the dynamic scene, we can have a
substantially much clearer understanding.

In this paper, we present a novel attentive semantic re-
current neural network, called stagNet for group activity and
personal action recognition, which combines spatial-temporal
attention and semantic graph. Specifically, individual activities
and their spatial relations are inferred and depicted by an
explicit semantic graph, and their temporal interactions are
integrated by a structural-RNN model. We utilize “message
passing” mechanism to transport spatial and temporal semantic
information between different components (e.g. nodeRNN
and edgeRNN), and adopt “factor sharing” mechanism to
permit the equivalent element in temporal dimension shares
the identical spatial factor. The model passes the message
that incorporates contextual semantic features between every
element of the graph. Furthermore, a spatio-temporal atten-
tion mechanism is incorporated into for leveraging various
levels of importance to different persons/body-regions/frames
in video sequences. More significantly, the semantic graph
and spatio-temporal attention are collaboratively end-to-end
trained. Lastly, we have done extensive experiments in four
datasets, i.e. Collective Activity Dataset [23], New Collective
Activity Dataset [24], UCLA Courtyard Dataset [7], and
Volleyball Dataset [1], and the performance of our framework
demonstrates that our stagNet is capable to model complex
and advanced relationship, and recognize group activity and
personal action.

It oughts to be mentioned that this paper is an extended
version of our previous conference paper [25]. Compared

to the preliminary version, we present an individual body-
region attention mechanism and a global-part feature pooling
strategy for improved the performance of individual action
recognition. Moreover, during the testing process, we conduct
extensive experiments on two more public benchmark datasets,
i.e. New Collective Activity Dataset [26] and UCLA Courtyard
Dataset [7], perform more qualitative results and detailed
analysis to demonstrate the effectiveness of our proposed
stagNet in this journal paper.

Precisely, the main contributions of this paper include:
• We introduce a semantic graph to describe explicitly all

the content in the scene, i.e. group activity, individuals’
actions and their spatial relations, with a ‘message pass-
ing’ mechanism. To the best of our knowledge, we are the
first to output such a semantic graph for understanding
group activities.

• We extend our semantic graph model to the temporal
dimension between frames in a video via a structural-
RNN, which is achieved by adopting the ‘factor sharing’
mechanism.

• A spatio-temporal attention mechanism and global-part
feature pooling operation are further integrated for better
performance, which places stress on the most represen-
tative persons, the vital body region of individual player
or the crucial frames within the video.

• Experimental results on four public benchmark datasets
demonstrate that the performance of our framework is
competitive with that of the state-of-the-art approaches.

The rest of our paper is organized as the following. Sec-
tion II reviews related works on group activity recognition
and deep structure model in brief. In Section III, we elaborate
the proposed method in detail. Afterward, Section IV presents
the experimental results and comprehensive analysis at length.
Finally, we draw the conclusion of this work in Section V.

II. RELATED WORK

In this section, we review the related works concisely.
We firstly introduce group activity recognition, which is the
most relevant works to this paper. Then, we survey recent
advances in modeling structures and attention mechanisms in
deep learning.

Group Activity Recognition. Traditional approaches usu-
ally capture hand-crafted features as spatio-temporal repre-
sentations (e.g., MBH and HOG) [23]. Khamis et al. [28]
combined per-frame and per-track cues for action recognition
in a structured scene. A multi-agent event detection method
was presented [29] with quadratic programming and linear
programming for role and event localization. Considering the
individual actions and interactions between different persons
in a scene, several graph models were introduced to handle this
problem [3]–[6], [30], [31]. Lan et al. [3] proposed an adaptive
structure modeling algorithm to model the latent time-space
structure. Wang et al. [4] learned a Markov Random Fields
(MRFs) [32] graph to model the complicated dependencies in
human cluster activity and individual action. Amer et al. [5]
conducted a Hierarchical Random Field (HiRF) to extract the
interaction between grouping nodes and the hidden variables
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Fig. 2. Pipeline of our proposed stagNet. From left to right: (a) object proposals are obtained from raw frames via a region proposal network (RPN) [27]; (b)
the semantic graph is modeled and constructed from text labels and visual data; (c) temporal factor is integrated into the graph by leveraging a structural-RNN,
and the semantic graph is inferred by message passing and factor sharing mechanisms; (d) finally, a spatio-temporal attention mechanism is introducing for
placing emphasis key persons/body regions/frames (denoted with a red star) for better performance.

in a scene. Shu et al. [6] formulated a spatio-temporal AND-
OR graph for interaction inference between groups or teams,
events and human roles jointly [7]. However, these approaches
utilized shallow features that cannot encode advanced semantic
information, and frequently overlook temporal relationship.

Recently, a number of deep models [1], [11], [25], [33]–[38]
have been devised for the task of group activity recognition.
As an example, Deng et al. [11] presented a graphical model
with a gate function to simulate edges and nodes. Ibrahim
et al. [1] proposed a hierarchical deep model, which contains
first LSTM layer to extract individual person’s dynamic action,
and the second LSTM layer to recognize group activity.
Shu et al. [33] introduced confidence-energy recurrent net-
works (CERN) with a novel energy layer, which can compute
the p-values to estimate the prediction energy for recognizing
group activity. Wang et al. [34] introduced a recurrent inter-
action framework, which unified all the contextual features,
e.g. individual person, inter-group and intra-group interactions.
In [35], multi-class object detection [19], [39] and fully
convolutional network [40] were adopted to capture multi-
scale features for estimating individual actions and collective
activities with probability inference. Afterward, Li et al. [36],
[41] introduced an image captioning and optical flow-based
model, and Biswas et al. [37] adopted a series of structural
interconnected RNNs to address the problem. Ibrahim et
al. [38] proposed a hierarchical relational network for group
activity recognition and retrieval. Moreover, Fan et al. [42]
proposed a multi-instance learning method for complex event
detection by adaptively selecting reliable shots. However, most
of these works either extracted individual features in spite of
the scene context or captured the context in an implicit manner
without any semantic information. In this paper, we conceive
to explicitly capture the semantic context of the scene by an
expressive spatio-temporal semantic graph [43] through RNNs.

Deep Structure Model. A plenty of researches have been
devoted to forming a more powerful deep network by com-
bining graph models. Bengio et al. [16] adopted ConvNets
integrated with Hidden Markov Model [44] for handwriting

recognition. Chen et al. [45] incorporated Markov Random
Fields (MRFs) into a deep learning model, and then Liu et
al. [46] adopted a similar architecture for semantic segmenta-
tion. [47]–[49] introduced deep neural networks with graph-
structure learning for estimating human pose. “DeepLab”
system was performed in [50] for image segmentation, which
combined deep ConvNets with fully-connected conditional
random fields (CRF) [17]. Zheng et al. [51] integrated CRF-
based probabilistic graphic model with the recurrent neural
network for semantic segmentation. Zhang et al. [52] in-
troduced the Bayesian optimization with ConvNets [53] for
improving object detection. Defferrard et al. [54] designed
fast localized convolutional filters on graph-based ConvNets
within the context of spectral graph theory. Niepert et al. [55]
introduced a framework for learning convolutional neural
networks for arbitrary graphs, which contains discrete and
continuous node and edge attributes. However, most of the
aforementioned works are task-specific and probably fail to
model spatio-temporal and interaction information from dy-
namic videos. Structural-RNN [12] was a Recurrent Neural
Networks combined with the advanced spatio-temporal graph
structure. Inspired by [12], we explicitly construct a semantic
graph under a spatio-temporal manner and describe semantic
space-time contents of the scene, e.g. inter-object and intra-
person relationships.

Attention Mechanism. Attention mechanisms have been
widely applied in vision and language tasks and achieved
great success. The pioneering research [56] proposed the
visual saliency detection as an attention model for scene
recognition. Shapobalova et al. [57] utilized human eye gaze
as attention to recognize actions in video. Afterward, Mnih
et al. [58] firstly incorporated attention strategy into RNNs
to extract selected regions in order. The “Look and think
twice” mechanism proposed by [59] was able to capture visual
attention on specific objects in images with deep learning
model. An active object detection based on dynamic attention-
action strategy was introduced in [60]. Attention models have
been additionally applied in machine translation [61] and
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image captioning [62] with natural language processing. Xu
et al. [62] devised soft attention and hard attention for image
caption. A temporal attention mechanism with text-generation
RNNs was introduced in [63] to choose the foremost related
frames. Ramanathan et al. [64] adopted time-varying attention
feature learned from the recurrent neural network (RNN) for
key player tracking and event classification. Ba et al. [65]
introduced “fast weight” that can be used to store and attend
to the temporary memories of the recent past. In our proposed
stagNet, we incorporate the contextual semantic graph and
spatial-temporal attention into a unified framework, which is
trained to focus on more relevant persons, individual body
regions and frames jointly in the video.

III. THE PROPOSED APPROACH

The overall architecture of proposed stagNet for group
activity and personal action recognition is depicted in Fig. 2
and Fig. 3. We employ hierarchical RNN with two varieties
of RNN units (i.e. nodeRNN and edgeRNN) and train them in
an end-to-end manner. Above all, the first step is to construct
the semantic graph using each frame as input, and then we in-
corporate the temporal factor by employing a structural RNN.
The inference is implemented by virtue of ‘message-passing’
and ‘factor sharing’ strategy. Finally, we introduced a spatio-
temporal attention mechanism to discover crucial people, body
regions and frames for performance improvement.

A. Semantic Graph

In this subsection, we introduce the semantic graph and
the mapping from visual data to the graph. We inference
the semantic graph to predict person’s affiliations based on
their positions and visual appearance. As shown in Fig. 2(b),
the semantic graph is constructed by parsing a scene with
multiple people into a collection of bounding boxes related
to the corresponding spatial positions. Each bounding box
of a specific person is defined as a node of the graph. The
graph edge that describes pairwise relations is determined by
the spatial distance and temporal correlation, which will be
introduced in Section III-B.

To generate a collection of person-level proposals (bounding
boxes) from the t-th frame It in video I , we utilize the region
proposal network (RPN), which is an element of the region-
based fully convolutional networks [27]. The RPN outputs
position-sensitive score maps as the relative position, and
connects a position-sensitive region-of-interest (RoI) pooling
layer on top of the fully convolutional layer. These proposals
are considered as the input of the graph inference procedure.
A total of three kinds of information are inferred by modeling
the graph: (1) the individual action label, (2) the inter-group
relationships, and (3) the group activity label.

Within the t-th frame It, we define a collection of K
bounding boxes as BIt = (xt,1, ..., xt,K), and the inter-
person relationship set as R (e.g. whether two players be-
long to the identical team). Given a set of the scene labels
(i.e. group activity label) Cscene, and individual action labels
set Caction, we define yt ∈ Cscene as the scene category label,
xacti ∈ Caction as the action category label of the i-th person

proposal, xposi as its spatial coordinates, and xi→j ∈ R as
the predicted relationship between the i-th and j-th person
proposal boxes. Besides, we define the set of all variables to
be x = {xacti , xposi , xi→j | i = 1...K, j = 1...K, j 6= i}. In
particular, the semantic graph is constructed by seeking out
the optimal yt∗ and x∗ that maximize probability function as
follows:
< x∗, yt∗ >= argmax

x,yt
Pr(x, yt | It, BIt),

P r(x, yt | It, BIt) =
∏
i,j∈K

∏
j 6=i

Pr(yt, xacti , xposi , xi→j | It, BIt).

(1)

In the following, we are going to present the graph inference
of frame-wise semantic graph structure in detail.

B. Graph Inference

Inspired by [66], the graph inference is applied by adopting
the mean field and computing the hidden states via Long
short-term memory (LSTM) network [21], which could be a
simplified yet effective recurrent neural network. We define
the semantic graph as G = (S, V,E), where S is the scene
node, and V and E are the object nodes and edges respectively.
Concretely, S represents the global representation of a frame
in a video, an object node vi ∈ V (i = 1, · · · ,K) refers
to the person-level proposal (where i = 1, ...,K corresponds
to the totally K persons in the scene), and the edge E
corresponds to the spatial configuration of object nodes V in
the frame. Through the mean field inference, we approximate
Pr(x, yt | ·) by Q(x, yt | ·) that depends on the current state
of each node and edge. The hidden state of LSTM unit is the
current state of each node and edge in the semantic graph. We
define ht as the current hidden state of scene node, hvi and
heij as the current hidden state of node i and edge i → j
respectively. Note that all the nodeRNNs share the identical
set of parameters and all the edgeRNNs share another set of
parameters. The solution to Q(x, yt | It, BIt) will be achieved
by calculating the mean field distribution as the following:

Q(x, yt | It, BIt)

=
K∏
i=1

Q(xacti , xposi , yt | hvi , ht)Q(hi | fvi)Q(ht | f t)∏
j 6=i

Q(xi→j | heij )Q(heij | feij ),

(2)

where f t is the convolutional feature of the scene in the
t-th frame, fvi is the feature of the i-th node, and feij is
the feature of the edge connecting the i-th node and j-th
node, which is the unified bounding box over two nodes.
We compute feij using six features via calculating the
basic distances and direction vectors, i.e. < |dx|, |dy|, |dx +
dy|,

√
(dx)2 + (dy)2, arctan(dy, dx), arctan2(dy, dx) >.

All of these features are captured by the RoI pooling layer.
Then the messages aggregated from other previous LSTM
units are input to the next step.

As shown in Fig. 2, the edgeRNNs offer contextual informa-
tion for the nodeRNNs, and the max pooling is performed over
the nodeRNNs. The nodeRNN concatenates the node feature
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Fig. 3. Illustration of our nodeRNN and edgeRNN model. At first, the model extracts visual features of nodes and edges from a group of object proposals,
and then takes the visual features as initial input to the nodeRNNs and edgeRNNs. We introduce the node/edge message pooling to update the hidden
states of nodeRNNs and edgeRNNs. The input of nodeRNNs is the output of the edgeRNNs, and nodeRNN also output the label of personal action, and
the max pooling is performed subsequently. Furthermore, a spatio-temporal attention mechanism is incorporated into our architecture. Finally, the top-most
nodeRNN (i.e. Scene nodeRNN) outputs the label of group activity.

and the outputs of edge-RNN accordingly. And the edgeRNN
passes the summation of all edge features that are connected to
the identical node as the message. EdgeRNNs and nodeRNNs
take the visual features as initial input and produce a collection
of hidden states. The model iteratively updates the hidden
states of the RNN. Finally, the hidden states of the RNN are
utilized to predict frame-wise scene label, person action label,
person position information and inter-group relationships.

Message passing [66] is able to iteratively improve the
effectiveness of inference in the semantic graph. In the graph
topology, the neighbors of the egdeRNNs are nodeRNNs.
Passing messages through the entire graph involves two sub-
graphs: i.e. node-centric sub-graph and edge-centric sub-graph
respectively. For node-centric sub-graph, the nodeRNN re-
ceives messages from its neighboring edgeRNNs. Similarly,
for edge-centric sub-graph, the edgeRNN gets messages from
its adjacent nodeRNNs. We introduce an aggregation func-
tion referred to as message pooling to learn accommodative
weights for modeling the importance of passed messages. We
calculate the weight factors for each incoming message and
aggregate the messages by a total weight for final representa-
tion. It demonstrates that this strategy is more effective than
average-pooling or max-pooling [66].

Specifically, we denote the update message input to the i-th
node vi as mvi , and message to the edge between the i-th
and j-th node eij as meij respectively. Then, we calculate the
message passed into the node considering its own hidden state
hvi and the hidden state of its connected edges heij and heji ,
and acquire the message passed into edge with respect to the

hidden state of its adjacent nodes hvi and hvj . Formally, mvi

and meij are computed as

mvi =
∑
j:i→j

σ(UT1 [hvi , heij ])heij +
∑
j:j→i

σ(UT2 [hvi , heji ])heji ,

meij = σ(WT
1 [hvi , heji ])hvi + σ(WT

2 [hvj , heij ])hvj ,
(3)

where W1, W2, U1 and U2 are parameters to be learned, σ is
defined as a sigmoid function, and [·, ·] means concatenation
of two hidden vectors. Finally, we utilize these messages to
update the hidden state of nodeRNN and edgeRNN iteratively.
Once finishing updating, the hidden states are then used to
predict personal action classes, bounding box offsets and
relationship varieties.

C. Integrating Temporal Factors

With the semantic graph of a frame, temporal factors are
integrated to construct the spatio-temporal semantic graph
(see Fig. 2(c)) with the structural-RNN [67]. Based on the
graph definition in Section III-A and III-B, we add a temporal
edge ET , such that G = (S, V,ES , ET ), where ES denotes
the spatial edge. The node vi ∈ V and edge e ∈ ES ∪ ET
in the spatio-temporal semantic graph enrolls over time. In
particular, the nodes at neighbor time steps, e.g. the node vi
at time t and the node vi at time t + 1 are connected with
the temporal edge eii ∈ ET . We define the node label as
ytv and corresponding feature vectors for node and edge are
referred to f tv , f te at time t, respectively. We present a ‘factor
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Fig. 4. Hierarchical semantic RNN structure for a volleyball match. Given object proposals and tracklets of all players, we feed them into spatial ConvNet,
followed by an RNN to represent each player’s action and appearance of the full scene. Then we adopt structural-RNN to determine temporal links for a
sequence of frames. Furthermore, we integrate the LSTM based spatio-temporal attention mechanism into the model. The output layer classifies the entire
team’s group activity.

sharing’ mechanism, which indicates that the nodes denoting
the identical person and the edges representing the same
relationship tend to share factors (e.g. parameters, original
hidden states of RNNs) across different video frames. Fig. 4
illustrates an example of structural-RNN through three time
steps in a volleyball match video. Please refer to [67] for more
technical details concerning structural-RNN.

We define two varieties of edges (edgeRNN) in the spatio-
temporal graph: One is spatial-edgeRNN representing the
spatial relationship. It is formed by the spatial message pooling
function in each frame and computed from adjacent player’s
nodeRNN depended on Euclidean distance. The other is
temporal-edgeRNN that connects adjacent frames of the same
player to represent the temporal information, which is created
by sharing factors between players’ nodeRNNs in a sequence
of video. We incorporate the features of spatial edgeRNN
between two consecutive frames into temporal edgeRNN,
leading to twelve additional features.

Throughout training, the errors of predicting the labels of
scene nodes and object nodes are back-propagated through the
sceneRNN, nodeRNN and edgeRNN. The passed messages
represent the interactions between nodeRNNs and edgeRNNs.
The nodeRNN is connected to the edgeRNN, and outputs the
personal action labels. Each edgeRNN models the semantic
interaction between adjacent nodes simultaneously and the
evolution of interaction over time.

D. Spatial-Temporal Attention Mechanism

The group activity involves multiple persons, however only
few of them play significant roles in determining the activity.
For instance, the ‘winning point’ activity in a volleyball game
typically occurs with a specific player spiking the ball and
another player failing to catch the ball. For a much better
understanding of the group activity and individual action, it is
rewarding to assign higher levels of importance to decisive
persons and critical body regions of the individual player.
Inspired by [64], [68], we introduce a spatio-temporal soft at-

tention mechanism to focus on specific persons and individual
body components in specific frames to enhance the recognition
accuracy of group activity and individual action, as illustrated
in Fig. 4. It is worthy noted that we combine proposals
of the identical person with KLT trackers [69] to construct
the complete representation of a player information from a
sequence of frames. While the person detections vary from
one frame to another, they can be associated across frames
through tracking, which leads to better feature representation
of the players.

1) Person-Level Spatial Attention: We adopt a spatial atten-
tion model to set weights to different persons using long-short
term memory (LSTM) networks. Concretely, given one frame
that has K players xt = (xt,1, ..., xt,K), we define the scores
st = (st,1, ..., st,K)T as the importance of all person actions
in each frame:

st =Ws tanh(Wxsxt + Uhsh
s
t−1 + bs), (4)

where Ws, Wxs, Uhs are the learnable parameter matrices,
and bs is the bias vector. hst−1 is the hidden variable from
an LSTM unit. And for the k-th person, the spatial attention
weight is calculated as a normalization of the scores:

αt,k =
exp(st,k)∑K
i=1 exp(st,i)

. (5)

Afterward, the input to LSTM unit is updated as x′t =
(x′t,1, ..., x

′
t,K)T , where x′t,k = αt,k ·xt,k. Then the representa-

tion of the attended player can be regarded as the input to the
RNN nodes in the spatio-temporal semantic graph mentioned
in Section III-A.

2) Individual Body-Region Attention: For individual action
recognition, different body regions contribute to the ultimate
result in variational weights. As an example, the movement of
arms is more critical than other body components for ’spiking’
action of a player. It is indispensable to seek out a way for
understanding individual posture and limb articulation. Hence,
we propose a soft attention to attend different body regions,
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for generating an attentive individual spatial feature xattt,K to
replace xt,K in above-mentioned, and performing a global-
part pooling strategy both considering global visual features
xglt,K and body-region visual features xbodyt,K . For the K-th
player in the t-th frame, we denote the individual global visual
feature as xglt,K , and we divide each person into six parts
equally (i.e. three rows and two columns w.r.t. right/left head,
right/left upper body and right/left bottom body, as portrayed
in Fig. 5) that refers to xt,Kbr

, br ∈ {1 : 6}. Then the vital
scores γbr = (γ1, · · · , γ6)T of each body-region are computed
as the following:

γbr = softmax(Wγ(tanh(Wxγxt,Kbr
+ Uhγh

γ
t−1))), (6)

where Wγ , Wxγ and Uhγ are the parameters to be learned,
hγt−1 is the hidden vector in an LSTM unit. Then, the attentive
appearance representation of individual player is denoted as
xattt,K = [xglt,K , x

body
t,K ], where xbodyt,K =

∑6
br=1 γbrxt,Kbr

, and
[·, ·] refers to the concatenation operation as global-part pool-
ing. Note that we only adopt individual body-region attention
with given ground-truth personal bounding box for individual
action recognition instead of group activity recognition. The
visualization of our person-level spatial attention and individ-
ual body-region attention models are illustrated in Fig. 5.

3) Frame-Level Temporal Attention: In a sequence, only a
number of frames contain the vital information. In order to find
them, we apply a temporal attention model to assign weight β
to each frame. For T frames in a video, the temporal attention
model is comprised of an LSTM layer, a fully connected layer
and a nonlinear ReLU unit. The temporal attention weight of
the t-th frame can be calculated as

βt = ReLU(Wxβxt + Uhβh
β
t−1 + bβ), (7)

where xt is the current input and hβt−1 is the hidden variables
at time step t-1. The temporal attention weight controls how
much information of every frame can be used for making the
final recognition decision. Obtaining the output zt of the main
LSTM network and the temporal attention weight βt at each
time step t, the important scores for Cscene classes are the
weighted summation w.r.t at all time steps:

o =
T∑
t=1

βt · zt, (8)

where o = (o1, o2, · · · , oCscene
)T , and T indicates the number

of frames. The probability of being the i-th category for video
I is

p(Ciscene|I) =
eoi∑Cscene

j=1 eoj
. (9)

E. Joint Objective Function

Finally, we formulate the joint overall objective function
with a regularized cross-entropy loss, and combine the seman-

Fig. 5. Visualization of our person-level spatial attention and individual body-
part attention model. We visualize the distribution of attention to different
people in terms of two group activities. The top row shows the players who
are ‘spiking’ and ‘blocking’, which are important for the ‘Left spike’ activity.
The bottom row shows the players who are ‘digging’ and ‘waiting’, which
are important for the ‘Right pass’ activity. Besides, the left column shows the
critical body movements to determine individual action, i.e. arms and legs, of
two key players.

tic graph modeling and the spatio-temporal attention network
learning as the following:

L = −
Cscene∑
i=1

yi log ŷi − 1

K

K∑
i=1

x∗i log x̂
∗
i+

λ1

K∑
k=1

(1−
∑T
t=1 αt,k
T

)2 +
λ2
T

T∑
t=1

‖βt‖2 + λ3‖W‖1,

(10)

where yi and x∗i refer to the ground-truth category label of
group activity and personal action, respectively. If a video
sequence is classified as the i-th class, yi = 1 and yj = 0
for j 6= i. ŷi = p(Ciscene|I) is the probability that a sequence
is classified as the i-th class. x̂∗i = p(Ciaction|BIt) is the
probability that a personal action belongs to the i-th class.
For recognition, we employ max-pooling over the hidden
representations followed by a softmax classifier. λ1, λ2 and
λ3 denote regularization terms. The third regularization term
is introduced to ensure to attend to more persons within
the spatial scene, and the forth term regularizes the learned
temporal attention weights via l2 normalization. The last term
regularizes all the parameters of the spatio-temporal attention
mechanism [68].

IV. EXPERIMENTS

In this section, we extensively evaluate the performance of
our stagNet on four public benchmark datasets, i.e. Collective
Activity Dataset [23], New Collective Activity Dataset [26],
UCLA Courtyard Dataset [7] and Volleyball Dataset [1] in
terms of two tasks, i.e. group activity and personal action
recognition. In the following, we first introduce the datasets
and implementation details in brief. Then we describe the
compared baselines, and present the experiments results and
corresponding analysis.

A. Datasets

Collective Activity Dataset [23] consists of 44 video clips
in total (about 2,500 frames shot by low-resolution cameras),
five group activities: crossing, waiting, queuing, walking and
talking, and six individual actions: N/A, crossing, waiting,
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queuing, walking and talking. The category label of group
activity is determined depending on the majority of people’s
actions classed in a video clip. The representations of the entire
scene are modeled as a bag of features descriptors of individual
action. Following the equivalent experimental setting in [3], we
adopt directly the tracklet data released in [26], and choose 1/3
of the video clips for testing and the rest for training.

New Collective Activity Dataset [26] totally contains
32 videos showing six collective activities: gathering, talk-
ing, dismissal, walking together, chasing and queuing.
Also, it includes nine interactions: approaching, walking-
in-opposite-direction, facing-each-other, standing-in-a-row,
walking-side-by-side, walking-one-after-the-other, running-
side-by-side, running-one-after-the-other and no-interaction,
three individual actions: walking, standing still and running.
Based on [11], we adopt the setting with 2,241 frames for
training and 1,106 for testing, as a result of leave-one-out for
testing is not improper for deep learning methods. Meanwhile,
we employ the trajectory data provided in [26].

UCLA Courtyard Dataset [7] contains a 106-minute,
30 fps, 2560×1920-resolution video footage totally, which
shows two distinct scenes from a bird-eye viewpoint of a
courtyard at the UCLA campus. There are totally six group
activities (i.e. walking-together, standing-in-line, discussing-
in-group, sitting-together, waiting-in-group and guided-tour),
and ten primitive actions (i.e. riding-skateboard, riding-bike,
riding-scooter, driving-car, walking, talking, waiting, reading,
eating and sitting) are annotated. Following [7], we split the
dataset 50%/50% for training and testing.

Volleyball Dataset [1] consists of 55 video clips of volley-
ball games with 4,830 labeled frames in total. Each player is
annotated with a bounding box and one amongst nine indi-
vidual action labels: waiting, setting, digging, falling, spiking,
blocking, jumping, moving and standing. Each full frame is
labeled with one amongst eight group activity categories: right
set, right spike, right pass, right winpoint, left winpoint, left
pass, left spike and left set. Following the equivalent setting
in [1], we select 2/3 of the dataset as training set and the
rest 1/3 as the testing set. Especially, we divide all players
in each frame into two teams following [1], and define four
team-level activities additionally: attack, defense, win and lose
in our experiments.

B. Implementation Details

Our model is implemented based on the TensorFlow [72]
framework. We select the VGG-16 model [70] pre-trained on
ImageNet as the backbone for extracting dense features, and
only adopt the convolution layers of VGG-16 and concatenate
a 1024-d 1 × 1 convolutional layer. Then, each frame is
represented by a 1024-d feature vector. Based on the RPN
detector [27], each bounding box is represented as a 2805-
d feature vector, which contains 1365-d appearance repre-
sentation and 1440-d spatial representation. Specifically, the
appearance features can be extracted by feeding the cropped
and resized bounding box through the backbone network, and
utilizing spatially pooling to achieve the response map from a
lower layer. The normalization operations include rescaling

distance features based on width, height, and area size of
frames, and resizing the summation of edge features based on
the number of edges associated with each node. Furthermore,
we directly adopt the tracklet data released on each dataset
for the ground truth person bounding boxes, i.e. Collective
Activity/New Collective Activity/UCLA Courtyard/Volleyball,
and utilize the KLT trackers [69] to acquire tracklet for each
person proposal.

The LSTM layers in our stagNet used as nodeRNN and
edgeRNN have 1024-d hidden units, and they are trained by
adding a softmax loss on the top at each time step. The
softmax layer is utilized to produce the score maps for the
action category and group activity class. Then, we additionally
add a fully connected layer for regressing the offset of each
person bounding box. We adopt a sliding window of 10
frames, and the batch size is set based on the analysis of
experimental results. To obtain the best performance, the batch
size for training the bottom layer of LSTM and the fully
connected layer of RPN is 8, and the training is performed
within 20,000 iterations. The top layer of LSTM is trained
in 10,000 iterations with a batch size of 32. Moreover, the
number of nodeRNNs in our model corresponds to the number
of detected persons, which is adjustive for various persons in
different events on each dataset. Besides, all the nodeRNN
and edgeRNN (i.e. spatial-edgeRNN and temporal-edgeRNN)
in our proposed stagNet share weights, respectively, according
to the “factor sharing” mechanism. “Factor sharing” can
leverage the nodeRNNs and edgeRNNs in temporal dimen-
sion to share the same spatial information as factor. For
optimization, we employ RMSprop [73] with a learning rate
ranging from 0.00001 to 0.001 for mini-batch gradient descent.
Practically, we set {λ1,λ2,λ3} as {0.001,0.0001,0.0001} for
Collective Activity/New Collective Activity/UCLA Courtyard,
and {0.01,0.001,0.00001} for Volleyball. In addition, the se-
mantic graph outputted of proposed stagNet is recorded as a
JavaScript Object Notation (JSON) file, which is a standard
tool for capturing structure information.

C. Compared Methods

We compare our model with a mass of baseline and state-
of-the-art approaches: VGG-16 Network [70], LRCN [71],
Multi-target Tracking [26], HDTM [1], HiRF [5], Contex-
tual Model [3], CERN [33], Cardinality Kernel [15], Deep
Structure Model [11], Recurrent Modeling [34],SBGAR [36],
SRNN [37], SSU [35], E2(∞) [7] and V1(∞) [74]1.

In particular, as shown in Table I, ‘VGG-16-Image’ and
‘LRCN-Image’ extract the holistic image features of every
single frame for recognition. ‘VGG-16-Person’ and ‘LRCN-
Person’ distinguish group activities using features pooled over
all cropped-size person-level features. ‘HDTM’ and ‘CERN’
methods conduct experiments utilizing the grouping strategy
on the Volleyball Dataset, which splits all players into one
or two groups, and ‘SRNN’ also divides persons into two
groups. ‘Recurrent Modeling’ and ‘SBGAR’ utilize two kinds

1In the experiments, the parameter setting of above-mentioned methods are
adopted from the corresponding papers.
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TABLE I
PERFORMANCE COMPARISON OF OUR METHOD AND THE STATE-OF-THE-ART APPROACHES. ‘SEMANTIC’ INDICATES WHETHER THE METHOD CAN

EXTRACT AND OUTPUT SEMANTIC INFORMATION. ‘ACCURACY-C’ SHOWS THE GROUP ACTIVITY RECOGNITION ACCURACIES ON COLLECTIVE
ACTIVITY. ‘ACCURACY-N’ SHOWS THE GROUP ACTIVITY RECOGNITION ACCURACIES ON NEW COLLECTIVE ACTIVITY. ‘ACCURACY-V-1’ AND

‘ACCURACY-V-2’ RESPECTIVELY DEPICT THE GROUP ACTIVITY AND PERSONAL ACTION RECOGNITION ACCURACIES ON VOLLEYBALL. ‘PROPOSAL’
AND ‘GT’ INDICATE THAT WE USE BOUNDING BOXES OBTAINED BY PROPOSAL AND GROUND-TRUTH BOUNDING BOXES PROVIDED BY [1],

RESPECTIVELY. THE BEST PERFORMANCE IS HIGHLIGHTED IN RED AND THE SECOND BEST IN BLUE.

Methods Semantic Accuracy-C Accuracy-N Accuracy-V-1 Accuracy-V-2
VGG-16-Image [70] × 68.3 71.9 71.7 -
VGG-16-Person [70] × 71.2 75.3 73.5 -
LRCN-Image [71] × 64.2 69.3 63.1 -
LRCN-Person [71] × 64.0 69.1 67.6 -
HDTM (1 group) [1] × 81.5 - 70.3 75.9
HDTM (2 groups) [1] × - - 81.9 -
Multi-target Tracking [26] × 79.6 83.0 - -
HiRF [5] × 83.1 87.3 - -
Contextual Model [3] × 79.1 - - -
Deep Structure Model [11] × 81.2 89.5 - -
Cardinality kernel [15] × 83.4 - - -
CERN-1 (1 group) [33] × 84.8 - 34.4 69.0
CERN-2 (1 group) [33] × 87.2 - 73.5 -
CERN-2 (2 groups) [33] × - - 83.3 -
Recurrent Modeling (RGB&Optical Flow) [34] × 89.4 85.2 - -
SBGAR (RGB&Optical Flow) [36]

√
86.4 - 67.7 -

SRNN (2 groups) [37] × - - 83.5 76.6
SSU-temporal (MRF) [35] × - - 87.1 -
SSU-temporal (GT) [35] × - - 89.9 82.4
Ours w/o attention (Proposal)

√
85.6 87.5 85.7 79.6

Ours w/ attention (Proposal)
√

87.9 89.2 87.6 -
Ours w/o attention (GT)

√
87.7 89.6 87.9 81.9

Ours w/ attention (GT)
√

89.1 90.2 89.3 82.3

of features by the spatial ConvNets (AlexNet [75]) for orig-
inal images and the motion ConvNets (GoolgeNet [76]) for
flow images. ‘SSU-temporal’ models employ two types of
detection methods on the Volleyball Dataset, i.e. the ground
truth bounding boxes (GT) and Markov Random Fields (MRF)
based detection. Note that ‘LRCN’, ‘HDTM’, ‘SRNN’ and
‘Deep Structure Model’ employ the AlexNet [75] as the back-
bone, and ‘SSU’ and ‘SBGAR’ adopt the Inception-V3 [77]
framework, while ‘CERN’ and our model select the VGG-16
model. Besides, ‘Multi-target Tracking’, ‘HiRF’, ‘Contextual
Model’, ‘Cardinality Kernel’, ‘E2(∞)’ and ‘V1(∞)’ extract
hand-crafted visual features rather than deep learning based
approaches. Only E2(∞) [7] and V1(∞) [74] have conducted
experiments on UCLA Courtyard dataset. E2(∞) utilized a
cost-sensitive explore-exploit strategy to optimize with the
hierarchical AND-OR graph, and V1(∞) employed a Monte
Carlo Tree Search as inference method with an expressive
AND-OR graph.

D. Results and Analysis

Results on the Collective Activity Dataset. The exper-
imental results are shown in the ‘Accuracy-C’ column of
Table I. As can be seen, our model with the attention model
obtains the second-best performance among the compared
state-of-the-art methods, no matter using the proposal-based or
ground-truth bounding boxes. As an example, our model gains
≈15% higher in accuracy than VGG/LRCN that are image-
level and person-level classification methods, mostly attributed
to our RNN-based framework with the iteratively message
passing and factor sharing scheme. Additionally, the improved
result demonstrates that the spatio-temporal semantic graph is

beneficial for improving the recognition accuracy. Note that
‘Recurrent Modeling’ obtains the best performance by adopt-
ing two varieties of features, i.e. RGB and optical flow, while
our stagNet only employ RGB visual features. Meanwhile,
our method and ‘SBGAR’ are the only two that incorporates
semantics into the model. However, our method is only one
to output graph structure based information. while ‘SBGAR’
utilize sentence based representations. The cardinality kernel
approach [15] obtains the best performance among non-deep
learning methods (with hand-crafted features) by counting the
numbers of individual actions in a frame directly. Additionally,
Fig. 9(a) illustrates the confusion matrix based on our stagNet
with spatio-temporal attention mechanism. We can find that
nearly 100% recognition accuracies in terms of ‘queuing’ and
‘talking’, demonstrating the effectiveness of our model. How-
ever, quite a few failure cases still exist because some action
classes share high similarities, e.g. ‘walking’ and ‘crossing’.
If we have more training data of different action categories,
the classification accuracy will be improved.

Results on New Collective Activity Dataset. We also
draw experiments with New Collective Activity Dataset. The
‘Accuracy-N’ column of Table I illustrates that the group
activity classification results. As can be seen, our model
outperforms the baseline and the state-of-the-art approaches,
regardless with attention or without attention mechanism.
Especially, our model gains a 15% improvement in group
activity recognition accuracy over deep learning baseline meth-
ods (i.e. VGG-16 and LRCN), mostly because of the additional
modeling of inter-person relationships. In addition, we draw
the confusion matrix based on our model in Fig. 9(b). Nearly
100% recognition accuracies can be obtained in terms of
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‘talking’ and ‘queuing’, and the accuracies of other categories
are more than 70%. However, the accuracy of ‘gathering’
and ‘dismissal’ is not good enough, since ‘gathering’ and
‘talking’ have the similar visual appearance in a crowd scene,
and ‘dismissal’ class is easy being confused by ‘talking’ and
‘walking’ when these classes activities occurred in the same
time.
Results on UCLA Courtyard. We have conducted extra
experiments on UCLA Courtyard [7]. As shown in Table II
and Table III, our method consistently outperforms existing
methods in terms of group activity and individual action
recognition. For each activity category, our stagNet gains about
more than 15% and 3% than E2(∞) and V1(∞), respectively.
Moreover, our method achieves 86.3% in terms of average
activity recognition accuracy that is the best performance in
UCLA Courtyard dataset. As for individual action recogni-
tion, our stagNet achieves the best performance across all
action categories than another two state-of-the-art methods.
The reason why our proposed method outperforms the other
approaches is that our stagNet can learn far better spatio-
temporal representation through semantic graph architecture,
and attention mechanism presented in stagNet is beneficial to
the personal action recognition.

TABLE II
THE ACCURACY OF GROUP ACTIVITY RECOGNITION WITH OUR PROPOSED
MODEL AND THE STATE-OF-THE-ART METHODS ON UCLA COURTYARD.

BEST RESULTS ARE IN BOLD.

Group Activity E2(∞) [7] V1(∞) [74] stagNet
Standing-in-line 68.0 80.4 83.1
Guided-tour 70.2 83.5 86.5
Discussing 75.1 81.5 83.6
Sitting 71.4 87.2 89.1
Walking 78.6 88.6 89.5
Waiting 72.6 80.1 83.3
Average N/A 83.7 86.9

TABLE III
AVERAGE PRECISION AND FALSE POSITIVE RATES (IN BRACKETS) OF

INDIVIDUAL ACTION RECOGNITION ON UCLA COURTYARD DATASET OF
OUR PROPOSED MODEL AND THE STATE-OF-THE-ART METHODS. BEST

RESULTS ARE IN BOLD.

Action E2(∞) [7] V1(∞) [74] stagNet
Walk 69.1(18.7) 80.0(17.1) 82.1(16.5)
Wait 67.7(20.2) 80.0(18.8) 82.9(17.0)
Talk 69.6(17.9) 76.8(16.6) 79.2(15.5)
Drive 70.2(9.7) 82.1(8.1) 85.5(7.3)
Surf 71.3(17.1) 79.8(15.4) 81.6(13.3)
Scoot 68.4(16.3) 81.8(14.1) 82.5(12.5)
Bike 61.4(12.3) 76.9(12.2) 78.3(11.9)
Read 67.3(12.1) 79.6(10.1) 81.7(9.2)
Eat 71.3(7.7) 82.3(6.5) 83.9(5.6)
Sit 64.2(9.0) 75.5(8.1) 77.9(7.5)

Results on the Volleyball Dataset. The recognition results
of proposed stagNet and the state-of-the-art are displayed in
the ‘Accuracy-V-1/2’ columns of Table I. We can see that the
group activity and personal action recognition results of our
model is superior to most of the state-of-the-art approaches,
and additionally competitive to the best ‘SSU’ extremely. It
ought to be noted that ‘SSU’ achieves the bounding boxes by
a much more sophisticated multi-scale technique and employs

the more advanced Inception-V3 model as the backbone.
While our stagNet adopt the basic VGG-16 and the ‘ground-
truth’ bounding boxes provided by [1] without other advanced
object detection strategy. Therefore, it can be expected that
the performance of our method could be further improved
by employing more advanced object detection models and
backbone networks. Additionally, our model outperforms other
RNN-based approaches (e.g. HDTM/CERN/SRNN) by about
5 ∼ 8% w.r.t. group activity recognition, because semantic
graph with structural-RNN in our model can extract and
model better spatio-temporal relationships. And integrating
the spatio-temporal attention model can further improve per-
formance, suggesting that different personal action plays the
various role and the most crucial persons’ visual features
are significant for recognizing the whole group activity. As
for individual action recognition, our proposed stagNet ac-
complish the second best performance (just lower 1% than
SSU), indicating the effectiveness of the body-region attention
mechanism and global-part pooling strategy in our method. In
addition, it is also worth noting that all the other state-of-the-
art are unable to capture the semantic structural information
for describing the scene. In contrast, our proposed approach
can describe the semantic contents of the scene via outputting
a semantic graph. Fig. 6 illustrates the recognition results
and the corresponding semantic graphs visually. Moreover,
Fig. 9(c) showed the confusion matrix based on our stagNet.
For the majority of group activities, we can reach promising
recognition accuracies (≥87%).
Parameter Sensitivity Analysis. Parameters have a great
influence on experiments performance. Therefore, we assess
the impact of two parameters when training our model,
i.e. Training Epochs and Sliding Window Size. We define each
epoch as the process input the entire training set for training
model each time. And the sliding window size is defined as the
number of video frames used to output a recognition result.
As shown in Fig. 7(a), we report the relationship between
the accuracy of group activity recognition and the number
of training epochs. We can observe that the more epochs
times result in higher accuracy, and when epochs exceed
600 the accuracy tends to stable in all dataset. Fig. 7(b)
shows the group accuracy on all dataset when select different
sliding window size (i.e. 5/10/15/20 frames). It is apparent that
employing a sliding window of 10 frames, we can get the best
accuracy.

In addition, there are totally five parameters in the objective
function of our model: K (number of players), T (number
of frames), λ1, λ2 and λ3 (see Eq. (10)). The value of K
depends on the specific dataset (e.g. K=12 w.r.t. Volleyball).
Fig. 8 shows the sensitivity of λ1, λ2 and λ3 on all the
four benchmark datasets. Through the experimental results,
we set {λ1,λ2,λ3} as {0.001,0.0001,0.0001} for Collective
Activity/New Collective Activity, and {0.01,0.001,0.00001}
for UCLA Courtyard/Volleyball for the best performance in
practice.

Qualitative Results Analysis. Fig. 13, Fig. 14, and Fig. 15
visually depict the individual and group activity recognition
results, and the attention paid to different subjects in the
scene using heat maps in terms of proposal and ground-
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Fig. 6. Visualization of group activity recognition results. Green texts denote successful results, and red ones indicate failure cases. The corresponding semantic
graphs obtained by our method are shown to explain the context of the whole scene. Such a graph generally consists of person actions, team activities and
group activity (i.e. event).
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Fig. 7. Recognition accuracy w.r.t. number of epochs and sliding window
size on the four datasets.
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truth (GT) bounding boxes. We draw the heat maps based
on the attention weights for objects/persons in each frame.
We can observe from the figures that some individual actions
play significant roles in distinguishing the corresponding high-
level group activity, such as individual ‘standing’ w.r.t. group
‘queueing’, individual ‘running’ w.r.t. group ‘chasing’, and
individual ‘spiking/blocking’ w.r.t. group ‘left-spike’. This
further indicates that the spatio-temporal attention model is
necessary and beneficial for recognizing the overall group

activity. In addition, we show some failure cases in the bottom
right corner of each figure, which is probably due to that
some action classes share high similarities with each other.
For instance, ‘walking’ in Fig. 13 is mistaken as ‘crossing’
probably because they both involve the individual actions
‘front’ and ‘back’, and similar street background. In Fig. 14,
‘dismissal’ is misled by ‘walking together’ due to that the
individual ‘walking’ commonly exists in both categories, and
there is no more useful label information in the dataset. In
Fig. 15, ‘L-pass’ is mistaken as ‘L-spike’, since ‘pass’ looks
very similar to ‘spike’ with hands up in the air. This also
indicates that the position of ‘ball’ is important for activity
recognition. In order to distinguish such ambiguous activities,
more training data or annotations will be required.

Additionally, Fig. 10 and Fig. 11 illustrate the visualization
of temporal attention for videos and body region attention for
the individual player. As can we see from Fig. 10, given a
video of ‘Left spike’ on Volleyball, the 5-th frame is the most
significant than the others as a result of a player is spiking
and two players are trying to block at the same time. These
movements of key players determine the final group activity
recognition result considerably. Besides, Fig. 11 depicts six
examples of body region attention heat map. We can notice
that the regions of arms and legs invariably play a paramount
role to affect the individual action. As an example, the arm
in upper right and legs in the bottom right in ‘(c)spiking’ are
given the higher attention weights than anther body regions. It
clearly demonstrates that our body-region attention mechanism
is reasonable and necessary.

E. Ablation Study

In this subsection, we perform several ablation studies to
better examine the effect of our proposed stagNet.

Body-Region Attention and Global-Part Pooling. To
explore the effectiveness of our proposed “body-region at-
tention” and “Global-Part Pooling” mechanism, we perform



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2894161, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 12

0.65

0.09

0.00

0.15

0.00

0.04

0.71

0.00

0.03

0.00

0.01

0.00

0.98

0.00

0.00

0.30

0.19

0.02

0.82

0.01

0.00

0.00

0.00

0.00

0.99

crossing

waiting

queueing

walking

talking

crossing waiting queueing walking talking

(a) Collective Activity

0.73

0.00

0.00

0.03

0.04

0.03

0.21

0.97

0.12

0.00

0.00

0.00

0.00

0.01

0.70

0.03

0.00

0.00

0.05

0.01

0.13

0.88

0.06

0.01

0.00

0.00

0.00

0.03

0.90

0.00

0.01

0.01

0.05

0.03

0.00

0.96

gathering

talking

dismissal

walking

chasing

queuing

gathering talking dismissal walking chasing queuing

(b) New Collecitve Activity

0.79

0.03

0.07

0.04

0.03

0.01

0.02

0.02

0.05

0.83

0.01

0.18

0.02

0.02

0.02

0.01

0.10

0.00

0.87

0.01

0.04

0.02

0.02

0.01

0.00

0.10

0.01

0.70

0.00

0.05

0.00

0.00

0.03

0.02

0.02

0.00

0.90

0.02

0.00

0.00

0.02

0.02

0.01

0.05

0.01

0.87

0.00

0.00

0.00

0.00

0.01

0.02

0.00

0.01

0.89

0.06

0.01

0.00

0.00

0.00

0.00

0.00

0.05

0.90

Lpass

Rpass

Lset

Rset

Lspike

Rspike

Lwin

Rwin

Lpass Rpass Lset Rset Lspike Rspike Lwin Rwin

(c) Volleyball

Fig. 9. Confusion matrices for three group activity datasets in our experi-
ments.

the ablative experiments and analysis. For comparison, we
introduce four variants in our experiments for individual action
recognition, i.e. “Max-Pooling”, “Average-Pooling”, “Only
Global”, and “Only Attention”, which refer to utilizing maxi-
mized body region feature, averaged all the body regions’ fea-
tures, only global person bounding box feature without body-
region attention, only body-region attention without global-
part pooling, respectively. Table IV illustrates the quantitative
results on the Volleyball Dataset [1]. Obviously, we can
find that our full model, combining body-region attention
with global-part pooling together, outperforms other variant
methods, and achieves the best performance. In contrast,

“Max-Pooling” and “Average-Pooling” achieve poor results,
suggesting global structural information of individual player
is significant for action recognition. Clearly, we can draw the
conclusion that our full model is effective attributed to taking
each body region feature attentively and global player body
information into consideration simultaneously. Furthermore,
we examine the effect of number of body regions in our model
in terms of accuracy and computation time for individual
action recognition. As shown in Fig. 12, the accuracy is
improved and computation time is augmented along with the
increasing of body regions numbers. However, the growth rate
of performance is considerably slower when the number of
body regions we selected exceeds six, while the increasing
rate of time consuming is still high. This illustrates much more
body splits are not economical. Therefore, we set the number
of body regions as six in our proposed model to obtain the
trade-off balance. Additionally, it is promising to incorporate
more pose information into our model as our future work for
sports video captioning [78].

TABLE IV
EXPERIMENT RESULTS FOR INDIVIDUAL ACTION RECOGNITION ON

VOLLEYBALL [1] DATASET. Max, Ave, Glo, Att AND Ours-Full DENOTE
MAX-POOLING, AVERAGE-POOLING, ONLY GLOBAL, ONLY ATTENTION

AND OUR FULL MODEL, RESPECTIVELY. BEST RESULTS ARE IN BOLD.

Performance Max Ave Glo Att Ours-Full
mAP(%) 73.6 77.6 81.9 82.0 82.3

Potential Efficiency. Most of existing methods invariably
neglect the balance between computational cost and recog-
nition accuracy. Therefore, it is necessary to reduce the
computational cost for untrimmed video classification while
retaining reasonable accuracy. Following the idea in [79], we
incorporate the method in the paper to examine the potential
efficiency of our model for group acitivity and individual
action recognition on Volleyball Dataset [1]. The method in
the paper proposed an end-to-end deep reinforcement approach
which introduces an agent to classify videos only by watching
a small portion of frames, based on “fast forward” and “adap-
tive stop” mechanism. As can be illustrated in Fig. 7(b), the
accuracy can improve along with increasing watched frames,
while the accuracy can not improve much when the number
of the watched frames exceeds 10. Furthermore, Table V lists
the results of our original stagNet and stagNet incorporated
with RL-LSTM/RL-GRU [79]. We evaluate our original stag-
Net in two cases: randomly sampling 10 frames (R10), and
uniformly sampling 10 frames (U10). Meanwhile, the setting
of RL-LSTM/RL-GRU is followed in [79]. All eight group
activity categories are utilized in our experiments. As shown
in Table V, our stagNet with RL-GRU achieves the best
performance, which only watches 8.66 frames on average but
obtains 89.9% in terms of mAP. It demonstrates that incor-
porating the method [79] into our stagNet is able to improve
the recnognition performance and efficiency. Additionally, the
nodeRNNs and edgeRNNs in our proposed stagNet need to be
applied for every frame. However, we introduce the temporal
attention to assign different important scores to every frame, so
that we can select the critical frame from a video to determine
the group activity correctly, which also has potential efficiency
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Fig. 10. Visualization of temporal attention for ‘Left-spike’ group activity on Volleyball Dataset. The attention weights vary from large to small as long as
the colors changing from red to blue.

Fig. 11. Visualization of body-region attention for individual player on
Volleyball. The attention weights change from large to small along with the
colors changing from red to blue.
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Fig. 12. Parameter sensitivity analysis of the body region number for
individual action recognition on Volleyball [1].

for video-based recognition tasks.

TABLE V
EXPERIMENT RESULTS (MAP) OF OUR PROPOSED ORIGINAL STAGNET

AND OUR STAGNET WITH RL-LSTM/RL-GRU [79] FOR GROUP
ACTIVITY RECOGNITION ON VOLLEYBALL DATASET [1]. R10 AND U10

DENOTE RANDOMLY SAMPLING 10 FRAMES AND UNIFORMLY SAMPLING
10 FRAMES, RESPECTIVELY. BEST RESULTS ARE IN BOLD.

Category stagNet RL-LSTM [79] RL-GRU [79]
R10 U10 mAP(%) #frames mAP(%) #frames

L-pass 79.1 79.2 79.3 6.97 80.5 8.37
R-pass 81.5 83.1 84.5 6.52 85.0 8.76
L-set 86.9 87.2 87.3 6.15 87.6 7.79
R-set 70.5 70.3 71.2 8.05 71.9 8.28
L-spike 90.3 90.2 90.5 8.23 90.8 7.52
R-spike 87.2 87.5 87.9 7.06 88.6 9.27
L-win 89.0 89.1 88.7 6.68 90.3 8.69
R-win 89.9 90.3 89.6 6.93 91.7 8.15
mean 89.1 89.3 89.2 7.25 89.9 8.66

Different Training Data and Unsupervised Training.
Because the current datasets for group activity recognition are
relatively small, it is meaningful to exploit the effect of pre-
training model with larger training data (e.g. Kinetics [80] and
ActivityNet [81]) or unsupervised manner [82] for our pro-

posed stagNet. The reason why we choose pre-trained VGG16
on ImageNet in our experiments is to make fair comparisons
with other state-of-the-art methods. Because our task mainly
focuses on person activity and action recognition, we firstly
conduct ablative experiment with pre-trained model (Con-
vNet+LSTM) on Kinetics datasets that is a large-scale human
action video dataset. Moreover, in order to overcome the
lack of sufficient labeled data, we perform the experiment
by adopting the pre-trained model in an unsupervised way
based on Zhu et al. [82]. The method of the paper is to learn
multirate representations for videos via context reconstruction
in an unsupervised training. Table VI shows the results of
our proposed stagNet pre-trained on Kinetics compared with
that pre-trained on ImageNet, and in an unsupervised training
strategy. From the table, we can find that our stagNet pre-
trained on Kinetics can obtain the better performance than
that pre-trained on ImageNet, demonstrating that adopting a
pre-trained model on such a large-scale action video dataset
for activity/action recognition is necessary and beneficial for
our task. In addition, our proposed stagNet with unsupervised
training strategy in [82] obtains highly competitive perfor-
mances, suggesting the unsupervised learning is promising to
solve the difficulty of insufficient annotated data.

TABLE VI
THE ACCURACY OF GROUP ACTIVITY AND INDIVIDUAL ACTION(IN

BRACKETS) RECOGNITION ON COLLECTIVE ACTIVITY [23] (COL)/NEW
COLLECTIVE ACTIVITY [26] (NEW)/VOLLEYBALL [1] (VOL) DATASETS

WITH PRE-TRAINED MODEL IN DIFFERENT DATASETS AND UNSUPERVISED
TRAINING STRATEGY. BEST RESULTS ARE IN BOLD.

Methods Col [23] New [26] Vol [1]
stagNet w/ ImageNet [83] 89.1 90.2 89.3(82.3)
stagNet w/ Kinetics [80] 90.2 92.5 90.5(83.5)
stagNet w/ Unsupervised [82] 88.3 88.9 87.6(80.0)

F. Discussion

Above all, our framework based on the semantic graph and
spatial-temporal attention mechanism for group activity and
individual action recognition is feasible in modeling the inter-
person relationship by aggregating time and space features.
Firstly, it is demonstrated that semantic graph based RNN
architecture has advantages in temporal feature aggregation
and context information extraction. Modeling group-person
interaction and person-person interaction will improve un-
derstanding group activity and individual action in sports
match and surveillance videos. And it is promising to utilize
more complicate dynamic scene and large-scale variety data
stream. Besides, the structural semantic output is beneficial
for lots of other tasks like dense video captioning [84], sports
video captioning [78] and visual question answering [85] as it
provides mid-level relationships for fine-grained recognition.
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Fig. 13. Visualization results on the Collective Activity dataset. Group activity
and individual action recognition results are shown in the first/fourth row, and
attention heat maps based on proposal and ground-truth (GT) bounding boxes
are shown in the second/fifth row and the third/sixth row, respectively. Green
texts indicate successful results, and red ones are failure cases. The important
persons in the scene are denoted with red stars. The attention weights change
from large to small along with the colors changing from red to blue.

Moreover, it is necessary and promising to apply actively
sampling informative data for improved action recognition
performance. The existing public datasets are limited and
the number of labeled examples is usually small. However,
massive data can be achieved on the Internet, such as sports
games and surveillance videos. To relieve the tedious work of
manual annotation and exploit the uncertainty across multiple
classes, multi-class active learning [86] is able to select the
most informative data from a candidate set for labeling, and
decides what data are more helpful and then asks humans to
label them for training. If we can adopt such multi-class active
learning method into our issue, we believe that our model
can obtain better performance and capture more meaningful
representations from large-scale data. We leave this for our
future work, which is expected to further enhance the overall
performance.

Last but not least, most related works and our model
specialize in group activity recognition rather than object
detection, hence we utilize mainstream object detection mod-
els (e.g. Faster RCNN, YOLO). Obviously, it will be helpful
to handle the situations (e.g. occlusion and people leaving the
scene) if we employ more accurate objection detection models.

Fig. 14. Visualization results on the New Collective Activity dataset. The
other settings are the same as in Fig. 13

V. CONCLUSION

In this paper, we propose a novel Recurrent Neural Network
with semantic graph and spatio-temporal attention mechanism,
named as stagNet, for group activity and individual action
recognition. Our framework could capture spatio-temporal
representation and inter-object relationships in a dynamic
scene with a semantic graph explicitly. Through the inference
procedure by virtue of message passing between nodeRNNs
and edgeRNNs, our model is capable of predicting the label
of the whole scene, each individual action, and inter-person
interaction at the same time. By incorporating the spatio-
temporal attention mechanism into our proposed framework
further, important persons, body regions or frames in the video
can be concentrated on, resulting in better recognition per-
formance. Extensive experimental results across four widely-
adopted public benchmarks demonstrate that our approach
acquires competitive performance to the state-of-the-art, whilst
outputting the detailed semantic description of the scene with
a structural graph. Future work will investigate new tools and
techniques about unsupervised learning so that we can utilize
and learn better features from unlabeled activity categories.
Besides, we will improve our framework by integrating rein-
forcement learning strategy.
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