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ABSTRACT

In the era of big data, few-shot learning has recently received much
attention in multimedia analysis and computer vision due to its
appealing ability of learning from scarce labeled data. However, it
has been largely underdeveloped in the video domain, which is even
more challenging due to the huge spatial-temporal variability of
video data. In this paper, we address few-shot video classi!cation by
learning an ensemble of SlowFast networks augmented with mem-
ory units. Speci!cally, we introduce a family of few-shot learners
based on SlowFast networks which are used to extract informative
features at multiple rates, and we incorporate a memory unit into
each network to enable encoding and retrieving crucial information
instantly. Furthermore, we propose a choice controller network to
leverage the diversity of few-shot learners by learning to adaptively
assign a con!dence score to each SlowFast memory network, lead-
ing to a strong classi!er for enhanced prediction. Experimental
results on two widely-adopted video datasets demonstrate the e"ec-
tiveness of the proposedmethod, as well as its superior performance
over the state-of-the-art approaches.
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1 INTRODUCTION

With the emergence of social networks and short-video sharing ap-
plications (e.g., Instagram and TikTok), there is an explosive growth
of multimedia data (especially videos) on the Internet. Since man-
ually annotating each video is infeasible, how to recognize un-
seen/novel videos becomes a very challenging problem in multime-
dia interpretation and understanding. To this end, few-shot video
classi!cation has emerged as a novel task [2, 52, 53, 56], aiming to
learn a classi!er to recognize novel classes given only a few labeled
video examples. Recently, the task has received increasing attention
due to its great potential of use in diverse applications, e.g., media
content understanding, social media analysis, human-computer
interaction, and intelligent surveillance [4, 5, 13, 17, 21, 22, 24, 27–
34, 39, 50, 53–55, 57]. However, the limited number of annotated
examples per class cannot well represent the overall class distribu-
tion, making this task extremely challenging and worthy of further
research e"orts.

So far, extensive e"orts have been devoted to few-shot learn-
ing, which can be mainly divided into meta-learning based ap-
proaches [10, 35, 36] and metric learning based ones [14, 25, 42, 43,
46]. The former solves the problem by designing a meta-learner to
learn a base-learner that is able to e"ectively and e#ciently adapt
to unseen related tasks. The latter follows a ‘learning to compare’
paradigm that classi!es an unseen image by measuring the similar-
ity based on a certain distance metric between two images, leading
to a deep embedding space for knowledge transfer. Nevertheless,
most current studies focus on few-shot learning in the image do-
main, and there are very limited works addressing few-shot video
classi!cation. In contrast to images, video data is usually in a much
higher dimensional space of more complex structures in terms of
both spatial and temporal variations, which makes few-shot video
classi!cation even more challenging, especially when there is a
shortage of labeled data.

In particular, there are two outstanding issues to solve in few-
shot video classi!cation. First, since the labeled videos are very
limited and videos are of complex spatial-temporal structures, more
informative and discriminative video representations need to be
extracted. Second, a single base-learner can be too weak to handle
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Figure 1: Illustration of 3-way 1-shot few-shot video classi-

!cation and our proposed ensemble learning model. Given

a support set that contains three categories with one video

example per category, an ensemble learning architecture

consisted of a collection of SlowFast memory networks is

trained for meta-learning following the episode training

strategy, and evaluated for the generalization performance

on new classes during test. In particular, a choice controller

network in the proposed ensemblemodel is designed to gen-

erate various con!dence scores to predict the !nal result.

the huge spatial-temporal variability of video data with inadequate
training samples, and the performance and robustness would de-
grade signi!cantly when given new data during test. Therefore, it
is highly desirable to build a strong learner from a collection of
weak learners. However, how to exploit the diversity and capture
the relevance between multiple few-shot learners remains an open
and challenging problem.

In this work, we address the above issues by proposing a novel
ensemble learning architecture to aggregate a set of weak learners
for few-shot video classi!cation. As illustrated in Fig. 1, the pro-
posed approach encourages the learners to cooperate with each
other while preserving su#cient diversities during training. Specif-
ically, a family of SlowFast networks are employed as the base
learners to capture both !ne-grained spatial details and temporal
dynamics at multiple rates. A memory unit is incorporated into
each of the SlowFast networks to instantly encode and retrieve the
relevant information. As a result, the representation and memoriza-
tion capabilities of our network are largely enhanced even given
only very few video examples. Furthermore, we develop a choice
controller network to help the model to make the best !nal decision
by adaptively assigning various con!dence scores to each SlowFast
memory network, and devising a novel hinge loss function to allevi-
ate the overcon!dence challenge. This leads to a stronger and more
robust learner based on the consensus of multiple weak learners.
Finally, we adopt the common episode training strategy [46] to
gradually accumulate the learned representations of videos into
our proposed model. Our main contributions include:

1)Wepropose a novel ensemble learning framework for few-shot
video classi!cation, which explicitly addresses the critical issues
existing in video representations and weak learners due to the lack
of labeled data.

2) We design a family of SlowFast networks to capture infor-
mative and discriminative video representations at di"erent frame
rates, which augmented with the memory unit can e#ciently record
and retrieve essential information to meet the few-shot require-
ment.

3) We develop a choice controller network to build a strong
classi!er to improve the prediction, by adaptively generating an
optimal combination of weaker learners based on their diversitie.

We conduct extensive experiments on two popular benchmark
datasets. The experimental results demonstrate that the proposed
approach can achieve high performance and signi!cantly outper-
forms state-of-the-art methods. The ablation study further veri!es
the high e"ectiveness for few-shot video classi!cation.

2 RELATEDWORK

2.1 Few-Shot Recognition

Few-shot learning aims to recognize novel categories with very lim-
ited annotated data [2, 52, 53]. Current research on few-shot learn-
ing can be divided into two perspectives: meta-learning based and
metric-learning basedmethods.Meta-learning based approaches [10,
35, 36] usually train a meta-learner to update the parameters of the
learner. For example, an Long-Short Term Memory (LSTM) [16]
based meta-learner [35] was proposed to optimize a neural network
classi!er. Santoro et al. [36] adopted LSTM as a controller with
an external memory module. Finn et al. [10] introduced a model-
agnostic approach that could learn adaptable parameters for deep
networks. Di"erently, metric-learning based ones [14, 25, 42, 43, 46]
usually adopt some informative similarity metrics. For instance,
Vinyals et al. [46] presented a bidirectional LSTM based Matching
Networks for one-shot learning. Garcia et al. [14] leveraged the few-
shot learning problem as a supervised message passing task with
graph neural networks. Prototypical Networks [42] learnt a met-
ric space to compute distances between di"erent classes. Relation
Network (RN) [43] learnt a non-linear deep metric by generating
images’ feature embedding with episodic training. A Simple Neural
AttentIve Learner (SNAIL) [25] was introduced to combine temporal
convolutions and soft attention. However, all the above works ad-
dressed few-shot image recognition rather than recognizing video
data. In this study, we propose an ensemble learning based model
to especially handle few-shot video classi!cation.

2.2 Video Classi!cation

A number of early works employed various hand-crafted spatial-
temporal features for video classi!cation, e.g., histograms of %ows (H-
OF) [20], motion boundary histograms (MBH) [6] and trajecto-
ries [47]. With the emergence of deep learning, two-stream con-
volutional neural networks (CNN) [41], 3D CNN [45], recurrent
neural networks (RNN) [51], and other works [3, 8, 13, 17, 48, 50]
have achieved more promising performance. However, very lim-
ited works [56] have been devoted to few-shot video classi!cation.
Because it is too expensive to annotate a huge number of videos,
the networks should be able to be trained to classify each unseen
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Figure 2: Architecture of the proposed SlowFast memory network, which consists of a slow pathway at g frame rate to extract

low temporal resolution features, a fast pathway at g/U frame rate to capture higher temporal resolution representations with

a fraction (V) of channels, and a memory unit designed to record and retrieve the most similar memory for classi!cation. �

and ) denotes the number of channels and the temporal dimension of features, respectively. g is the value of the temporal

stride.

category. In [56], compound memory networks were proposed to
address the above video-based task; however, the basic idea was
still derived from a few-shot image classi!cation model. Conversely,
we introduce an ensemble learning architecture with multi-rate
SlowFast memory networks that speci!cally focuses on the task of
few-shot video classi!cation.

2.3 Ensemble Learning

In order to overcome the unreliability of a single model, ensemble
learning [7, 11, 26, 44] aims at enhancing multiple weak learners by
exploiting the diversity among them, resulting in a strong ensemble
learner for better performance. Bagging [1] and boosting [12, 37, 38]
are two common strategies. Meanwhile, traditional ensemble learn-
ing models were based on decision trees, random forests, and etc.
Recently, more attention has been paid to CNN based ensemble
learning. Due to the unsatisfactory performance of the single model,
our goal is to study the e"ectiveness of ensemble learning specif-
ically in the scenario of few-shot video classi!cation. To the best
of our knowledge, this is the !rst model of ensemble learning for
video-based few-shot learning.

3 PROBLEM DEFINITION

In this work, we aim to train a model that can be utilized to classify
unseen classes with a few training examples. Generally, we follow
themeta-learning setting used in few-shot image classi!cation tasks
[10, 35]. Speci!cally, we divide the dataset into a meta-training set,
a meta-validation set and a meta-test set. Our aim is to solve an
# -way  -shot video classi!cation problem, where # is the number
of classes and  is the number of labeled samples in each class. To

train the model, we sample a set of # -way  -shot tasks from the
meta-training set, where a task is also called an episode containing a
support set and a query set. The learned model on the meta-training
set is evaluated on the meta-test set.

4 PROPOSED APPROACH

Fig. 1 illustrates our proposed ensemble learning based architec-
ture, which is composed of (a) a collection of SlowFast Memory

Networks (SFMN) and (b) a Choice Controller Network (CCN). The
SFMN, which is augmented with an external memory unit, aims
at predicting diverse classi!cation results at multiple rates, each
of which contains a slow pathway and a fast pathway. Next, the
CCN makes the !nal decision by aggregating the results from the
ensemble of SFMNs.

4.1 SlowFast Memory Networks

We build our base-learner upon the ‘SlowFast’ strategy which can
signi!cantly improve the performance of video classi!cation [8].
Speci!cally, the SlowFast network contains a slow pathway to
capture spatial appearances at a low frame rate, and a fast pathway
to extract temporal motion information at a high frame rate. The
two pathways are thus parallel and complementary to each other.

As illustrated in Fig. 2, the slow pathway is leveraged to capture
the representation of a video clip with a large temporal stride g ,
indicating that the network processes one out of g frames. If the raw
video clip has) × g frames, the slow pathway will take) frames as
samples. In addition, the fast pathway is utilized to extract !ne-
grained temporal featureswith a small temporal stride of g/U , where
U > 1 is the frame rate ratio. Hence, the fast pathway can sample
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U) frames, making it denser than the slow pathway. Furthermore,
the fast pathway also utilizes non temporal downsampling layers,
and thus captures high-resolution features and maintains su#cient
temporal !delity of the input video clip. Besides, the fast pathway
adopts a ratio of V (V < 1) channels to improve the computational
e#ciency. Subsequently, we fuse the features captured by the two
pathways by lateral connections [9, 23] after pool-1, res-2, res-3
and res-4 layers, as shown in Fig. 2. Since the temporal dimensions
of the two pathways are di"erent, the lateral connections transform
the features from the fast pathway to align with the slow pathway.
At last, both pathways’ outputs are concatenated after a global
average pooling layer, and then fed to the following memory unit
to obtain the !nal result.

To !t in the few-shot video classi!cation task, we introduce
an external memory unit inspired by ‘memory network’ [49] to
augment each SlowFast network through a feed-forward network,
which is able to store and memorize crucial information of an
example video in a relatively long term, even though the given
video has been observed only once. Our designed memory unit
can provide each SlowFast network with powerful ‘memorization’
capability by writing new information from videos to memory,
and the stored information can be easily accessed and utilized for
testing. The SlowFast network retrieves videos’ representations
from memory using a read operation and place videos’ features
into memory with a write operation. Given an input video GC , we
produce a corresponding key :C , i.e., a vectorized and normalized
hidden representation of GC concatenated from Slow pathway and
Fast pathway, which will be stored in a row of a memory matrix
ΩC . These keys play an crucial role to help our proposed SlowFast
memory network capture the optimal video representations during
the training process, and hence provide a larger search space to !nd
relatively exact matching in testing. When retrieving a memory, the
cosine similarity measurement is adopted to compute the relevance
between the key :C and a particular memory ΩC (8) from the 8-th
row of the memory matrix. Formally,

cos(:C ,ΩC (8)) =
:C · ΩC (8)

‖:C ‖‖ΩC (8)‖
. (1)

Then, we produce a read-weight vector fAC corresponding to :C
through a softmax function to guide the memory retrieval as fol-
lows:

fAC (8) ←
exp(cos(:C ,ΩC (8))

∑

9 exp(cos(:C ,ΩC ( 9))
. (2)

Hence, a memory slot AC corresponding to :C will be retrieved based
on the computed weight vector:

AC ←
∑

8

fAC (8)ΩC (8) . (3)

Finally, the retrieved AC in the memory is utilized as input to a
classi!er, i.e., a softmax layer, to produce the predicted result for
query GC . Thus, our proposed SlowFast memory network can not
only capture enough spatial context and exact temporal characteris-
tics in terms of low and high frame rates, but also e#ciently record
and access the essential representations of examples even when
given only once or twice.

Figure 3: Illustration of the proposed choice controller net-

work (CCN) for a collection of SlowFast memory networks,

where CCN can generate a set of corresponding con!dence

scores based on the concatenated features of the low-level

layers from each network. The best classi!cation result can

then be achieved by aggregating the diverse predictions

from all the networks.

4.2 Choice Controller Network

Due to scarcity of labeled data in each class with respect to few-shot
task, a single SlowFast network would not be fully trained, resulting
in a weak classi!er. Thus, in order to establish a strong classi!er,
we propose to learn an ensemble of weak classi!ers, which are
aggregated by a choice controller network. As illustrated in Fig. 3,
the choice controller network is deployed after several layers of the
SlowFast network and learns to output the con!dence score of each
network with a new designed loss function. Hence, the input of our
choice controller network is the concatenated features of all the
SlowFast memory networks, and the output is an"-dimensional
vector indicating the con!dence scores assigned to the" networks.

More concretely, given" SlowFast memory networks, the pa-
rameters of the SlowFast memory networks and the con!dence
controller network are de!ned as {\<}"<=1 and \2 , respectively.
Meanwhile, the input meta-training dataset is denoted as D with
# categories, and then we sample a mini-batch of video examples
referred to as B ∈ D, where an input video example is de!ned as
GC . Furthermore, we de!ne the prediction probability of the<-th
SlowFast network on video GC as %\< (~̂C |GC ), and the output con-
!dence score of the con!dence controller network is referred to
as [B1C , · · · , B

"
C ] through a softmax layer to ensure

∑"
<=1 B

<
C = 1,

where ~C and ~̂C are the ground-truth and predicted category for
GC , respectively. Formally, the !nal output probability score of clas-
sifying a video example GC to class 2 is formulated as:

%5 8= (2 |GC ) =

"
∑

<=1

B<C %\< (~̂C = 2 |GC ) . (4)

Because of the imbalanced category distribution and limited
training data in the dataset, a deep neural network is prone to
classify an unseen video to certain categories with high scores
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of over con!dence. To overcome such problems, we propose a
con!dence hinge loss in our objective function. Then, the objective
of our proposed ensemble learning model can be formulated as
follows:

min
`,\<,\2

L(�) =

#
∑

C=1

[
"
∑

<=1

`<C ;
(

~C , %\< (~̂C |GC )
)

+ ; (`C , BC )

+ _

�
∑

2≠~C

max
(

%5 8= (2 |GC ) − %5 8= (~C |GC ) + W, 0
)

]

B .C .

"
∑

<=1

`<C = 1,∀C ; `<C ∈ {0, 1},∀C,<,

(5)

where `<C refers to the indicator variable, 2 means the 2-th cate-
gory in the dataset, ~C and ~̂C are the ground-truth and predicted
result, respectively. Here `<C = 1 denotes that the<-th model is
the best choice to recognize the C-th video example. Meanwhile,
; (·, ·) denotes the cross entropy function, and _ and W are the hyper-
parameters that balance the margin-based loss and the con!dence
margin, respectively.

In Eq. (5), the !rst term is leveraged to minimize the loss of
the most con!dent or reliable SlowFast model, and make each
network can perform better on some particular classes than other
base networks according to the indicator variable `<C . The second
term enables the choice controller network to make maximally
accurate prediction depending on the various outputs of di"erent
SlowFast networks, and !nally assigns the con!dence score to each
SlowFast model. The third term is proposed to make the probability
of the predicted correct class higher than the incorrect classes, in
order to alleviate the overcon!dence problem. In other words, if
some particular SlowFast networks make wrong predictions with
high con!dence, the proposed loss is capable of depressing that and
promote the SlowFast network to predict the label correctly with
a high probability. Furthermore, our proposed objective function
would not a"ect the !nal prediction even if the maximal probability
is too high, which can also preserve the diversity of classi!ers in
the ensemble.

4.3 Training and Inference

Training: Our proposed model can be trained in an end-to-end
manner by following the commonly-adopted episode training strat-
egy [10, 35]. Algorithm 1 summarizes the whole training procedure
of our model based on stochastic gradient descent (SGD). During
mini-batch based training, given a query video and the correspond-
ing ground-truth label, each SlowFast memory network retrieves
the memory slot from the memory matrix as input to the softmax
layer based on Eq. (3). The memory will be cleared by initializing
all memory variables with zeros in each episode.
Inference: Given a test video example G , all the SlowFast memory
networks in our ensemble model will produce " diverse classi-
!cation possibilities, i.e., %\< (~̂ |G) (< = 1, · · · , "), and then the
proposed choice controller network will generate %5 8= (G) by ag-
gregating such outputs to produce the !nal result. Note that the
weights of each SlowFast network are !xed and the content in the
memory will be updated with the support set.

Algorithm 1 Meta-Training Algorithm of Our Ensemble Model

Input: Meta-training set D, and trade-o" hyper-parameters: _, W ;
Output: The trained ensemble model;
1: Randomly initialize parameters of each SlowFast memory net-

work and choice controller network, i.e., {\<}"<=1 and \2
2: repeat

3: Sample a N-way K-shot task batch B ∈ D
4: for< = 1→ " do

5: // Output of each SlowFast memory network in a batch
6: %\< (B) → ~̂<,1, · · · , ~̂<, |B | ;
7: end for

8: for C = 1→ B do

9: `<C = 0,< = 1, · · · , " ;
10: // Choose the lowest error model for each example
11: <∗← argmin<∈[1, · · · ," ]; (~C , ~̂<,C ), and set `<

∗

C = 1;
12: // Determine the con!dence scores from choice controller

network based on Eq. (5)
13: BC = [B

1
C , · · · , B

"
C ]

14: // Calculate the best prediction
15: %5 8= (~̂C |GC ) =

∑"
<=1 B

<
C %\< (~̂C |GC )

16: // Calculate the gradient w.r.t. parameters \2 by Backprop
optimization

17: mL(GC )/m\2
18: // Calculate the gradient w.r.t. parameters {\<}"<=1 by

Backprop optimization
19: mL(GC )/m\<
20: end for

21: Update the parameters in the whole model
22: until converage

5 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to evaluate our
proposed ensemble learning network for few-shot video classi!ca-
tion tasks on the widely-adoptedKinetics [19] and Charades [40]
datasets. We conduct comprehensive comparison with previous
methods and extensive ablation study to gain insight into the e"ec-
tiveness of our model.

5.1 Experimental Settings

Datasets: The Kinetics [19] dataset contains 306,245 videos from
400 categories. All video examples on this dataset belong to various
kinds of human actions. We adopt the same experimental setting as
in [56], and randomly choose 100 classes, each of which includes 100
video examples. The Charades dataset [40] includes around 9.8k
videos as the training set, and 1.8k videos as the validation set from
157 classes, each of which lasts more than 30 seconds on average.
Similar to the settings on Kinetics, we randomly choose 100 classes
and 100 examples per category from Charades. On both datasets,
we split all the categories into 64, 12 and 24 classes as the meta-
training, meta-validation and meta-test sets in our experiments,
respectively.
Evaluation Metrics: In few-shot learning, the evaluation is per-
formed in terms of # -way  -shot classi!cation tasks in the meta-
test set, from which we randomly sample a set of # -way  -shot
tasks, and an unlabeled query example belonging to one of such #
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Table 1: Performance comparison and ablation study of our full model (M=10), baseline models, and the state-of-the-art meth-

ods on Kinetics and Charades in terms of 5-way few-shot video classi!cation on the meta-test set.

Methods
Kinetics [19] Charades [40]

1-shot 2-shot 3-shot 4-shot 5-shot 1-shot 2-shot 3-shot 4-shot 5-shot

ResNet-50 RGB 28.7 36.8 42.6 46.2 48.6 13.2 21.7 26.5 29.8 30.3
ResNet-50 Flow 24.4 27.3 29.8 32.0 33.1 10.5 12.1 13.9 15.7 17.2
LSTM RGB 28.9 37.5 43.3 47.1 49.0 13.9 22.5 27.6 30.7 31.1
Nearest-Finetune 48.2 55.5 59.1 61.0 62.6 15.7 23.7 29.1 31.9 33.2
Nearest-Pretrain 51.1 60.4 64.8 67.1 68.9 16.2 24.0 29.8 32.5 33.9
MatchingNet [46] 53.3 64.3 69.2 71.8 74.6 18.9 25.2 31.7 33.2 35.1
MAML [10] 54.2 65.5 70.0 72.1 75.3 19.2 26.8 32.3 34.5 36.7
LSTM Embed 57.6 67.9 72.8 74.8 76.2 21.8 29.1 34.3 36.1 38.2
Plain CMN [18] 57.3 67.5 72.5 74.7 76.0 21.3 28.7 33.8 35.6 37.9
Video CMN [56] 60.5 70.0 75.6 77.3 78.9 23.6 31.9 36.2 37.8 40.6

Our Full Model 63.7 73.9 79.5 80.9 83.1 25.7 33.5 38.7 39.8 42.3

Ensemble-Max 61.2 71.3 76.9 78.5 80.2 25.1 32.9 38.1 39.2 41.6
Ensemble-Avg 61.9 71.8 77.5 79.1 80.5 25.3 33.1 38.3 39.5 41.9

Ours w/o Ensemble Learning 58.0 68.1 74.2 75.3 78.2 22.8 29.3 35.7 37.6 39.2
Ours w/o SlowFast Memory Network 59.2 69.5 74.9 76.7 79.8 23.2 30.5 36.2 38.1 40.7
Ours w/o Memory Unit 60.7 70.6 76.2 77.9 79.5 24.3 32.2 37.5 38.3 41.2

categories needs to be classi!ed during test. Similar to [10, 46, 56],
we also adopt the mean accuracy by randomly sampling 20,000
episodes across all our experiments, and report the performance of
1-shot, 2-shot, 3-shot, 4-shot, and 5-shot in terms of 5-way classi!-
cation tasks.
Compared Methods: We compare our proposed framework with
several state-of-the-art approaches, i.e.,MatchingNet [46],MAM-

L [10], Plain CMN [18], and Video CMN [56]. Especially, Video
CMN [56] is the only one mainly focusing on few-shot video classi!-
cation, while the others are proposed to address few-shot image clas-
si!cation but trained on the video datasets in our experiments. Addi-
tionally, we introduce several baseline models including ResNet-50
with RGB frames and stacked optical %ow images as input, re-
spectively (‘ResNet-50RGB’/‘ResNet-50 Flow’), LSTMwith RGB
frames as input (‘LSTM RGB’), a baseline model utilized nearest
neighbour with !ne-tuned and pre-trained, respectively (‘Nearest-
Finetune’/‘Nearest-Pretrain’). Another baseline ‘LSTM Embed’
is a variant of Video CMN by replacing the embedding module in
Video CMN with an LSTM unit.

5.2 Implementation Details

Our proposed model is implemented with the PyTorch library, and
run on eight Nvidia GeForce GTX 1080Ti GPUs. In the training
process, we randomly sample data from the meta-train set to make
the experimental results more solid. Following the episode train-
ing mechanism, there are totally 20,000 episodes, each of which
includes a support set and a query set. We adopt SGD to train our
model and set the batch size to 32. The initial learning rate is set to
1×10−4, and then reduced by half for every 5,000 episodes. During
test, 200 episodes are randomly selected from the test set to obtain

the top-1 mean accuracy. Note that our proposed whole model in-
cluding ensemble SlowFast memory networks and choice controller
network is trained in an end-to-end manner from scratch without
!ne-tuning process. In all experiments, we leverage ResNet-50 [15]
as our backbone model of each SlowFast memory network to cap-
ture the frame-level features of a video, and conduct experiments on
M networks in the ensemble (" = {1, 2, 3, 5, 10, 20}). We implement
the choice controller network with 3 fully-connected layers, and de-
ploy it after the last convolutional layer of each SlowFast network.
For preprocessing, each frame of input video is randomly cropped to
224×224 pixels. Besides, we randomly sample a clip of U) ×g frames
from the video example, and input) and U) frames to the network.
As for the hyper-parameters in our proposed model, we set g = 16,
U = 8 and V = 1/8 in all SlowFast memory networks. And we set
_ = 1, W = 0.3/0.6 on the Kinetics/Charades datasets, respectively,
in the choice controller network. These hyper-parameters are tuned
on the meta-validation set, and the training process would stop
once the accuracy starts decreasing.

5.3 Results and Analysis

Table 1 summarizes the performance comparison of our proposed
approach (10 networks in the ensemble), other baselines, and cur-
rent state-of-the-art methods w.r.t. 1-shot, 2-shot, 3-shot, 4-shot,
and 5-shot in terms of 5-way classi!cation tasks on the Kinetics and
Charades datasets. From the table, we can observe that our proposed
model achieves the best performance across all few-shot classi!-
cation tasks on both datasets, which veri!es the signi!cance and
e"ectiveness of the ensemble learning strategy and the memory-
augmented SlowFast networks. We !nd that !ne-tuned ResNet-50
with RGB frames and optical %ow images on the meta-training
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Figure 4: Comparison of per-class recognition rate of our ensemble method (M=10) with the state-of-the-art approaches on

Kinetics in terms of 5-way 1-shot video classi!cation.

dataset cannot help to improve the result of few-shot video classi!-
cation. This could be attributed to the over!tting of the !ne-tuned
model on the meta-training set, which has very poor generalization
capability to the novel classes of the meta-test set. Compared with
these baselines, our proposed model enhances the performance
with a very large margin, again demonstrating the e"ectiveness
of our ensemble learning based model. Furthermore, our proposed
method outperforms the traditional few-shot learning methods
(e.g., MatchingNet, MAML and Plain CMN) by more than ∼10%
across all shots on both datasets. This is due to our proposed Slow-
Fast memory networks, which have a stronger capability to capture
multi-rate discriminative representations of videos, while other
state-of-the-art methods are only dedicated to the image domain. In
addition, our proposed approach also outperforms the other video-
based few-shot learning method ‘Video CMN’ by about 3% and 2%

in terms of all shots on Kinetics and Charades, respectively.
Furthermore, we report the top-1 mean accuracy of each class

w.r.t. 5-way 1-shot video classi!cation in Fig. 4. We can clearly
see that our ensemble model with 10 networks outperforms other
state-of-the-art approaches in most of the video categories. For
instance, our model obtains more than 80% accuracy with respect
to ‘folding paper’, ‘diving cli"’, ‘hurling’ and ‘!lling eyebrows’. It
could be attributed to that our ensemble learning based model is
able to capture the relevance between base-learners and leverage
distribution discrepancies for video classi!cation, and thus our
proposed choice controller network can make the best prediction.

5.4 Ablation Study

We perform further ablation studies to verify the e"ectiveness of
di"erent components in our framework.

Importance of choice controller network. In our proposed
model, the introduced choice controller network is one of the main
contributions. It can generate various con!dence scores for each
SlowFast memory network and adaptively aggregate all results to
achieve the best choice. Here, we propose two alternative operations
in ensemble learning, i.e., only adopting the maximum or averaged
con!dence result of particular SlowFast memory network as the
!nal prediction, denoted as ‘Ensemble-Max’ and ‘Ensemble-Avg’ in
Table 1 and Fig. 5, respectively. We can clearly observe from Table 1
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Figure 5: 5-shots performance of di"erent ensemble strate-

gies (i.e., ‘Our’, ‘Max’ and ‘Avg’) for various numbers of Slow-

Fast memory networks (M=1, 2, 3, 5, 10, 20) in our proposed

approach on Kinetics and Charades.

and Fig. 5 that our proposed full model with choice controller net-
work outperforms both the ‘Ensemble-Max’ and ‘Ensemble-Avg’
across all shots on both datasets no matter employing how many
networks in the ensemble, especially more than nearly 2% on Kinet-
ics. This indicates that aggregating the !nal result based on various
con!dence scores is better than directly selecting the maximum
or averaged result in an ensemble, because our proposed strategy
can greatly preserve the diversity of each base learner in an en-
semble. Furthermore, our full model can beat a single SlowFast
memory network (denoted as ‘Ours w/o Ensemble Learning’ in
Table 1) by a large margin, demonstrating the e"ectiveness of the
proposed ensemble learning architecture again. It is worth noting
that our model without ensemble learning (‘Ours w/o Ensemble
Learning’) leads to the worst performance across two datasets com-
pared against our model without SlowFast memory network (‘Ours
w/o SlowFast Memory Network’) as shown in Table 1, showing that
our designed ensemble learning structure plays a more important
role in improving the performance of the whole model. Additionally,
during each test case, we calculate the possibility residuals between
the !nal probability aggregated by choice controller network and
predicted probability of each SlowFast memory network (de!ne
as '< (~̂ |G) = %5 8= (~̂ |G) − %\< (~̂ |G)). The probability residuals
near zero indicate that the m-th model is assigned a high con!-
dence score on these samples, while the probability residuals near
1 denote the m-th model has low con!dence for those data. The
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Figure 6: The prediction probability distribution of our ensemble model (5 networks) tested on Kinetic meta-test set. (a) The

%5 8= of choice controller network which is achieved by aggregating all SlowFast memory models. (b)-(f) show the probability

residual between %5 8= and %< for m=1, 2, 3, 4 and 5 respectively. The y axis denotes the percentage of prediction probability

distribution across all test cases.

Table 2: Performance of di"erent way and shot settings of

few-shot video classi!cation on Kinetics.

1-shot 2-shot 3-shot 4-shot 5-shot

5-way 63.7 73.9 79.5 80.9 83.1

6-way 59.6 68.2 75.1 77.5 80.9
7-way 57.3 66.8 73.2 75.0 77.8
8-way 53.9 63.1 70.5 72.6 75.1

distribution of possibility residual results on Kinetics meta-test set
are shown in Fig. 6. We can !nd from Fig. 6 (a) that most of !nal
prediction probability lies in [0.9, 1.0], denoting that our proposed
choice controller network is able to make the best decision with
high con!dence. From Fig. 6 (b)-(f), we can see that each SlowFast
memory network can only be assigned high con!dence to make
the !nal decision on limit samples and categories, demonstrating
that our proposed ensemble architecture can e"ectively exploit the
diversity and improve the !nal prediction with the help of choice
controller network.

Number of models in ensemble learning.We also examine
the e"ect of the number of SlowFast memory networks on the over-
all performance. The result is shown in Fig. 5, where we can see
that the performance increases along with the increasing number
of networks in the ensemble, but the increase rate would decrease
when the number exceeds 10. This is because it becomes di#cult
to converge with so many networks, and a larger number of net-
works in the ensemble will de!nitely lead to more time-consuming
computations. Hence, we generally choose 10 SlowFast memory
networks in the ensemble considering a good trade-o" between
classi!cation accuracy and computational e#ciency.

E"ectiveness of SlowFast memory network. As denoted in
Table 1, our full model with SlowFast memory network outper-
forms our model without SlowFast memory network (denoted as
‘Ours w/o SlowFast Memory Network’ in Table 1, which means our
model only utilizes ResNet-50 as the backbone model) across all
shot tasks, indicating that the proposed SlowFast memory network
can e"ectively capture better spatial-temporal information through
multi-rate processing than ResNet. Meanwhile, the full model out-
performs our model without memory unit (denoted as ‘Ours w/o
Memory Unit’ in Table 1) on both datasets. It should be attributed
to the proposed memory unit which can signi!cantly improve the

Table 3: Performance of various memory sizes in our pro-

posed SlowFast Memory Network on Kinetics.

1-shot 2-shot 3-shot 4-shot 5-shot

Mem-32 56.2 65.6 71.8 73.0 75.5
Mem-64 59.7 68.5 75.2 76.3 79.9
Mem-128 61.2 71.5 77.3 78.6 81.5
Mem-512 63.7 73.9 79.5 80.9 83.1

Mem-2048 63.5 73.6 79.2 80.5 82.8

few-shot classi!cation performance by e#ciently recording and
retrieving the information from a generated memory matrix.

N-way few-shot classi!cation. In addition to 5-way few-shot
video classi!cation, we examine the performance of N-way classi!-
cation. As shown in Table 2, the performance degrades along with
the increasing of N, demonstrating it remains a challenge for few-
shot learning with too many ways. In addition, the performances
of N-way one-shot tasks still have a large space to improve further.

Memory size.We report the results of di"erent memory sizes in
the memory unit in Table 3 and observe that our model augmented
with the memory unit can obtain the best performance when the
memory size is set to 512. If the memory size is too small, it is not
enough to store the information of novel category data; if it is too
large, it leads to too much noise and thus the performance cannot
be further improved either.

Finally, we note that our proposed ensemble approach achieves
better performance at the expense of training multiple learners.
Thus, this is a reasonable trade-o".

6 CONCLUSION

In this paper, we present an ensemble learning framework with
multi-rate SlowFast memory networks for few-shot video clas-
si!cation. We emphasize and verify the importance of learning
spatial-temporal information of a video at di"erent frame rates
and learning various con!dence scores to exploit the diversity of
multiple base-learners. Both of them are bene!cial for few-shot
video classi!cation and largely boost the performance. Extensive
experiments on two popular benchmarks show competitive results
compared with several state-of-the-art models and baselines. In the
future, how to apply the proposed model to few-shot cross-modal
video retrieval and video captioning deserves further exploration.
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