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Abstract— Predictive scene parsing is a task of assigning
pixel-level semantic labels to a future frame of a video. It has
many applications in vision-based artificial intelligent systems,
e.g., autonomous driving and robot navigation. Although pre-
vious work has shown its promising performance in semantic
segmentation of images and videos, it is still quite challenging to
anticipate future scene parsing with limited annotated training
data. In this paper, we propose a novel model called STC-GAN,
Spatio-Temporally Coupled Generative Adversarial Networks for
predictive scene parsing, which employ both convolutional neural
networks and convolutional long short-term memory (LSTM)
in the encoder-decoder architecture. By virtue of STC-GAN,
both spatial layout and semantic context can be captured by the
spatial encoder effectively, while motion dynamics are extracted
by the temporal encoder accurately. Furthermore, a coupled
architecture is presented for establishing joint adversarial train-
ing where the weights are shared and features are transformed in
an adaptive fashion between the future frame generation model
and predictive scene parsing model. Consequently, the proposed
STC-GAN is able to learn valuable features from unlabeled
video data. We evaluate our proposed STC-GAN on two pub-
lic datasets, i.e., Cityscapes and CamVid. Experimental results
demonstrate that our method outperforms the state-of-the-art.

Index Terms— Predictive Scene Parsing, Generative Adversar-
ial Networks, Coupled Architecture, Spatio-Temporal Features.

I. INTRODUCTION

THE goal of predictive scene parsing [1]–[3] is to assign
a semantic label to every pixel in an unobserved video

frame, which is critical for real-time decision making and
scene understanding in a wide range of applications. As shown
in Fig. 1, predictive scene parsing can benefit self-driving,
traffic surveillance and automotive assistance.

Most of the extensive efforts in computer vision invari-
ably focus on images that have been observed, e.g., object
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Fig. 1. Illustration of the proposed STC-GAN. STC-GAN consists of two
models: the upper part is a future frame generation model that generates the
next frame given a sequence of observed frames in a video; while the bottom
part is a predictive scene parsing model that produces a semantic parsing map
by inputing the generated future frame. In addition, a coupled architecture
is adopted in STC-GAN, which employs a weight-sharing constraint and a
feature adaptation transform between two models. En and De denote encoder
and decoder, respectively. GT refers to the ground-truth.

detection, image and video semantic segmentation. Conven-
tional state-of-the-art approaches, e.g., SegNet [4], U-net [5],
DeepLab [6], PSPNet [7], are all based on fully convolutional
networks (FCN) [8], which already achieve a remarkable
success in semantic segmentation. However, they only tackle
the task of semantic segmentation for existing images or
videos in a frame-by-frame manner, but cannot predict parsing
results for future images or frames. Moreover, the estimated
labeling results across frames by applying current video
segmentation methods often suffer from jittering, noise and
inconsistency, due to the overlook of the significant tem-
poral context information. In addition, these existing deep
learning based methods require a large amount of training
data with pixel-level annotation, which are too expensive
to acquire.

Predicting or anticipating the future image or frame is a
valuable but yet challenging problem in computer vision. How
to model the inherent uncertainty and possible events that
may happen in the future is the main difficulty in predictive
scene parsing. Only limited work tried to address this issue,
such as autoregressive convolution neural network [3], [9]
and predictive learning model [1], [2]. So far, these methods
capture appearance features but fail to incorporate important
semantic contextual cues and motion dynamics across frames,
leading to noisy and inconsistent labeling results. Capturing
semantic context and motion information of a dynamic scene
should provide further improvements.

In this paper, to address the above-mentioned issues, we
propose a novel deep framework, called Spatio-Temporally
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Coupled Generative Adversarial Networks (STC-GAN) for
predictive scene parsing. Specifically, our proposed STC-GAN
includes two models: a future frame generation model and a
predictive scene parsing model. Given the preceding frames of
a video, STC-GAN learns powerful temporal representations
by extracting rich dynamic features and high-level spatial
contexts via a spatio-temporal encoder in the future frame gen-
eration model. Furthermore, we introduce a coupled structure
to share weights and transform features in an adaptive fashion
between the future frame generation model and the predictive
scene parsing model during the adversarial training process.
By virtue of such a coupled architecture, our STC-GAN is
capable of transferring valuable representations from unlabeled
video data to predictive scene parsing. It is worth noting that
our main task is predictive scene parsing in a video. In other
words, the key challenge is not segmentation or parsing itself
but an effective mechanism to adapt the parsing model to
an unseen new frame using prior knowledge from previous
frames. What we try to develop is not a general solution
of scene parsing, but a better method for such a specific
scenario. Consequently, experimental results are conducted to
demonstrate that our model can learn rich dynamic features
and produce more accurate and temporally consistent parsing
results without extra supervision. Our main contributions are
summarized as follows:

• We propose a novel Spatio-Temporally Coupled Gen-
erative Adversarial Networks (STC-GAN) for predic-
tive scene parsing, which captures contextual appearance
information and dynamic temporal representation from
prior frames to generate future scene parsing results.

• We introduce a coupled architecture into our STC-GAN,
and employ a weight-sharing strategy and a feature
adaptation transform in the adversarial training to capture
the joint representation between future frame generation
and the corresponding scene parsing with limited training
data. To the best of our knowledge, we are the first to
propose such a coupled architecture for predictive scene
parsing.

• Extensive experiments on two public benchmarks,
i.e., Cityscapes and CamVid, validate the performance of
the proposed method over the state-of-the-art.

This manuscript is organized as the following. In Section II,
we provide a brief overview of the literature related to
semantic segmentation in images and videos, predictive scene
parsing, and generative adversarial networks. In Section III,
we elaborate details of the proposed STC-GAN architecture.
In Section IV, we tabulate the performance of the proposed
approach, and end in Section V with a conclusion of this work.

II. RELATED WORK

In this section, we briefly review three related aspects,
i.e., semantic segmentation, predictive scene parsing, and
generative adversarial networks.

A. Semantic Segmentation

With the emergence of deep learning methods, semantic
segmentation has seen large improvements in recent years.
Long et al. [8] present an end-to-end Fully Convolutional
Network (FCN) for pixel-to-pixel semantic segmentation.

SegNet [10] is an FCN-based encoder-decoder network for
road and indoor scene understanding. Ronneberger et al. [5]
propose a similar encoder-decoder architecture named U-net
composed of a contracting path to capture contextual features
and a symmetric expanding path for precise localization.
Recently, DeepLab [6] combines fully-connected Conditional
Random Field (CRF) and deep convolutional neural net-
works, and employs atrous spatial pyramid pooling to encode
objects at multiple scales. PSPNet [7] utilizes a multi-scale
pyramid module to exploit global contextual information
from pyramid layers for scene parsing. Furthermore, a grow-
ing number of methods attempt to solve video semantic
segmentation [11]–[20] with deep learning methods. In con-
trast, our model is proposed to handle the unobserved future
scene parsing task.

B. Predictive Scene Parsing

Limited work strive for this new topic. Jin et al. [1], [2]
employ predictive feature learning for video scene parsing and
optic flow anticipation, where a predictive learning network
is integrated to produce structure-preserving parsing results.
Luc et al. [3] develop an autoregressive convolutional neural
network [9] that can iteratively generate multiple frames for
semantic segmentation of future frames. Rochan et al. [21]
utilize a convolutional LSTM as encoder to capture the
representation of observed frames for future parsing map
prediction. Chen and Han [22] introduce a multi-timescale
context encoding approach for scene parsing prediction, which
can simultaneously extract both short-term and long-term
temporal relations from the preceding frames, and model
semantic interdependencies with an attention mechanism.
Zhou et al. [23] design a depth embedded recurrent predictive
parsing network to address the same challenge, by leveraging
binocular stereo images to mine 3D structure information and
a LSTM to capture temporal consistence between observed
frames. In this work, we present a novel STC-GAN that
can learn spatial and temporal information jointly, and
employ them to generate better future frames and produce
the corresponding parsing results.

C. GAN

Generative Adversarial Networks (GAN) are first intro-
duced to generate images from random noise [24], and
have been widely used in many fields including image
synthesis [25]–[27], image editing [28], semantic inpaint-
ing [29], future prediction learning [9], [30], [31] and rep-
resentation learning [32], [33]. The main idea of GAN is to
employ an adversarial loss to force the generated images to be
indistinguishable from real images. Inspired by CoGAN [34],
our proposed STC-GAN model shares the knowledge and
representations between a future frame generation model and
a predictive scene parsing model with a coupled architecture,
by employing a weight-sharing constraint and feature adapta-
tion transform in adversarial training.

III. PROPOSED APPROACH

A. Overview
The framework of our STC-GAN is illustrated in Fig. 1.

Given an input video x , we define xt ∈ R
w×h×c as the
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Fig. 2. Overall architecture of our proposed Spatio-Temporal Encoder-
Decoder. We feed a sequence of frame differences into the temporal encoder
and input the last observed frame to the spatial encoder. We then concatenate
and combine the output from them to form the joint spatio-temporal features,
and forward them to the predictive decoder (denoted as De) with multi-scale
residual connections (denoted as blue dashed arrows) to generate the next
frame.

t-th frame, where w, h, c denote the width, height and
the number of channel, respectively. Our goal of predic-
tive scene parsing is to generate the future frame x̂t+1
and the corresponding scene parsing result Sx̂t+1 , through
observing previous consecutive frames (e.g., three prior
frames denoted as xt−2:t ). STC-GAN consists of two models:
i.e., a future frame generation model and a predictive scene
parsing model, while a coupled architecture is incorporated
into the adversarial training to share the weights between them.
An encoder-decoder based CNN and convolutional LSTM [35]
are introduced in the future frame generation, thus building a
model composed of a spatial encoder, a temporal encoder and
a predictive decoder. Our predictive scene parsing model also
employs an encoder-decoder architecture similar to SegNet [4],
where the encoder is initially trained with the shared weights,
and the decoder utilizes a deconvolutional segmentation model
with feature adaptation transform. We will describe the details
in the following section.

B. Spatio-Temporal Encoder

As shown in Fig. 2, the Spatial-Temporal Encoder includes
two encoders: one is the spatial encoder for extracting appear-
ance and layout information from the last observed frame,
and the other is the temporal encoder for capturing dynamic
representation considering the difference between the previous
frames.

1) Spatial Encoder: The spatial encoder is designed to
capture the spatial content representation from a single video
frame, i.e., the appearance features of object and background,
the structural layout of the scene, etc. We employ a Convolu-
tional Neural Nework (CNN) as the spatial encoder to extract
the deep features from the last observed frame xt :

It = Fspat(xt ), (1)

where It ∈ R
w′×h′×c′

is the encoding spatial feature tensor,
Fspat denotes the convolution operation on the last observed
frame, w′, h′, c′ denote the width, height and the number of
channel of the output, respectively.

2) Temporal Encoder: The temporal encoder is utilized to
capture the motion dynamics of the scene. Notably, we adopt a
convolutional LSTM [35] layer, and distinguish the difference
between two adjacent frames (i.e., xt and xt−1) recurrently
via element-wise subtraction. The output will be the hidden
representation Ht that encodes the motion dynamics of the
scene, which is formulated as

[Ht , Ct ] = F temp(xt − xt−1, Ht−1, Ct−1), (2)

where Ht ∈ R
w′×h′×c′

denotes the encoding temporal feature
tensor, Ct ∈ R

w′×h′×c′
is the memory cell in LSTM for

retaining the observed dynamic representation across time, and
F temp is the convolutional LSTM operation.

C. Residual Connection

Inspired by ResNet [36], [37], we employ residual connec-
tions between the spatial-temporal encoder and the predictive
decoder for preserving more spatio-temporal representation
after the pooling operation. Consecutive convolution layers
and a linear layer for rectification are also adopted. Moreover,
we utilize pyramid pooling to capture multi-scale contex-
tual features for encoding, and each scale feature can have
one residual connection. The residual feature at layer l is
formulated as:

r l
t = F res([I l

t , H l
t ])l, (3)

where r l
t is the residual output feature at layer l, [I l

t , H l
t ]

denotes the concatenation of the spatial and temporal repre-
sentation extracted from the spatio-temporal encoder at layer
l, and F res means the residual operation at layer l.

D. Predictive Decoder

The predictive decoder is utilized to generate the next
future frame x̂t+1 ∈ R

w×h×c . It receives the combined
output (i.e., the concatenation of It and Ht ) and residual
information (i.e., rt ) from spatial-temporal encoder. We adopt
the Deconvolution Network [38] as our decoder. It includes
deconvolution layers, rectification layers and upsample layers.
Then the future frame generated by the decoder can be
formulated as:

x̂t+1 = Fdec([It , Ht ], rt ), (4)

where [It , Ht ] ∈ R
w′×h′×2c′

denotes the concatenation of the
spatial-temporal encoder output, rt is the residual feature from
every layer of the spatial-temporal encoder before pooling,
and Fdec is the operation of the predictive decoder. The
formulation of Eq. (4) refers to that our proposed predictive
decoder adopts It and Ht as input representations, as well as
the residual feature rt as the additional information to preserve
motion-content in the frames. In addition, the top layer of our
decoder employs a tanh(·) function for activation.

E. Training Objective of Future Frame Generation

Finally, we use a joint objective function to train the future
frame generation model of our STC-GAN, as the following:

LST = αLimg + βLgen, (5)
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where α and β are hyper-parameters during optimization.
Inspired by [9], Limg is the loss in image space to guide
the model to generate correct average sequence. It can be
formulated by:

Limg = Lp(xt+k, x̂t+k) + Lgdl(xt+k, x̂t+k), (6)

where xt+k and x̂t+k are the ground truth and generated
frames, respectively, and k refers to the number of future time
step.

Lp(y, z) =
T∑

k=1

‖y − z‖2
2,

Lgdl(y, z) =
h,w∑

i, j

|(|yi, j − yi−1, j | − |zi, j − zi−1, j |)|λ

+ |(|yi, j−1 − yi, j | − |zi, j−1 − zi, j |)|λ, (7)

where y and z denote the pixel value of xt+k and x̂t+k ,
respectively, λ is a hyper-parameter, p refers to pixel value
of a frame, gdl means the gradients of pixel values, and {i, j}
indicates the position of each pixel. Technically, Lp is utilized
to match the average pixel values, and Lgdl is employed to
match the gradients of pixel values between the ground-truth
frame and the generated frame.
Lgen is the generator loss in adversarial training to guide

our model to generate a more realistic frame, which is
formulated as

Lgen = − log D([x1:t , G(x1:t )]). (8)

The discriminator loss in adversarial training is defined as

Ldis = − log D([x1:t , xt+1:t+k])−log(1 − D([x1:t , G(x1:t )])),
(9)

where x1:t is the concatenation of the input images, xt+1:t+k

is the concatenation of the ground-truth frames, G(x1:t ) =
x̂t+1:t+k is the concatenation of all predicted frames from
the generator of STC-GAN, D(·) is the discriminator in our
STC-GAN. The generator G tries to capture the underlying
data density and confuse the discriminator D, while the opti-
mization procedure of D aims to distinguish the ground-truth
future frames from the generated frames by G.

F. Coupled Architecture

Our STC-GAN consists of two models: M f for future frame
generation and Ms for predictive scene parsing. As depicted
in Fig. 3, we employ a weight sharing and feature adaptation
transform mechanism to transfer the spatial-temporal repre-
sentations learned by M f to Ms , to address the dilemma of
training with small-scale labeled data.

Specifically, our coupled structure is based on the existence
of shared high-level representations between the image and
the corresponding semantic parsing result. Generally speaking,
the first several layers of the generative models tend to encode
high-level semantic information and the last layers encode
low-level details [34]. Therefore, for the first few layers we
utilize a weight-sharing strategy to capture such high-level

Fig. 3. Illustration of the coupled architecture in STC-GAN. E1/G1/D1 are
the encoding/generator/discriminator functions in the future frame generation
model, and E2 denotes the encoder in the predictive scene parsing model,
respectively. θ

g(i)
1

/θ
g(i)

2
and f (i) /s(i) refer to the weight and feature in the

i-th layer of two models. ŝ(i) denotes the adaptation transformed feature. The
dotted lines denote using a weight sharing constraint and a feature adaptation
transform between the first and last several layers of two models, respectively.

representations, while we adopt a feature adaptation transform
technique to transfer knowledge details for the last few layers.1

1) Generative Models: Let f and s be input from the
marginal distribution of the two domains, f ∼ Pf and
s ∼ Ps , respectively. We define g1 and g2 as the generators
of M f and Ms :

g1( f ) = g(m1)
1 (g(m1−1)

1 (· · · g(2)
1 (g(1)

1 ( f )),

g2(s) = g(m2)
2 (g(m2−1)

2 (· · · g(2)
2 (g(1)

2 (s)), (10)

where g(i)
1 and g(i)

2 are the i -th layers of g1 and g2, and m1
and m2 are the numbers of layers in g1 and g2, respectively.

For the future frame generation model and the predictive
scene parsing model, they share the same high-level concepts.
We force the first layers of g1 and g2 to have identical structure
and share the weights, that is θ

g(i)
1

= θ
g(i)

2
, for i = 1, 2, . . . , m

where m is the number of shared layers, and θ
g(i)

1
and θ

g(i)
2

are the parameters of g(i)
1 and g(i)

2 , respectively. Through this
constraint, the high-level semantics will be encoded in the
same way in g1 and g2. The weight-sharing constraint can
help reduce the total number of parameters in the network.
Note that the training of g1( f ) is according to LST in Eq. (5).

2) Discriminator Models: Let d1 be the discriminative
models of M f given by:

d1( f ) = d(n1)
1 (d(n1−1)

1 (· · · d(2)
1 (d(1)

1 ( f )), (11)

where d(i)
1 is the i -th layers of d1 and n1 is the number of

layers. The discriminative model maps an input image to a
probability score, estimating the likelihood that the input is
drawn from a true data distribution. It is noteworthy that the
training of d1( f ) is based on Ldis in Eq. (9).

1In this paper, we choose the first three layers for weight-sharing and last
three layers for feature adaptation transform in both models of our STC-GAN
in experiments.
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3) Learning: Formally, the STC-GAN model corresponds
to a constraint minimax process given by:

max
g1,g2

min
d1

V (g1, g2, d1),

subject to θ
g(i)

1
= θ

g(i)
2

, f or i = 1, 2, · · · , m (12)

where the value function V is defined as the following, and E

is the empirical estimate of the probability:
V (g1, g2, d1)

= E f ∼Pf [− log d1( f )] + E f ∼Pf [− log(1 − d1(g1( f ))]
+ Es∼Ps [− log g2(s)]. (13)

4) Knowledge Distillation With Feature Adaptation Trans-
form: Distillation knowledge transfer methods [13], [39], [40]
suggest that employing the intermediate representation of the
teacher network as a hint can benefit the training process and
improve the final performance of the student. In our proposed
coupled architecture, the generator of future frame generation
model can be regarded as a teacher, while the predictive
scene parsing model can be considered as a student. How-
ever, the norms of features in the two coupled layers maybe
different. Therefore, in the last few layers in our proposed
coupled architecture, we add a feature adaptation transform
layer to match the number of channels of layers between the
teacher and student networks, as shown in Fig. 3. Technically,
we calculate the adaptation transformed feature ŝ(i) in the i -th
layer of the student network by linearly combining with the
representation f (i) and s(i) in the i -th layer of the teacher and
student network, as the following:

ŝ(i) = W1 ⊗ s(i) + W2 ⊗ f (i), (14)

where W1 and W2 refers to weight vectors, and ⊗ means
per-channel scalar multiplication operation.

In summary, the future frame generation model tries to
generate a future scene image, which confuses the discrim-
inative model. The discriminative model tries to distinguish
whether the image comes from real domain or generative
model. Meanwhile, the encoder of predictive scene parsing
model obtains the shared weights from future frame generation
for initial training. Then we can employ a deconvolutional
segmentation model as decoder in our predictive scene pars-
ing model with the representation adaptation transform to
improve scene parsing. Our architecture can be trained by
back-propagation with the alternating gradient update steps.
The coupled architecture has shown that a joint distribution
of images can be learned through weight-sharing constraint
and feature adaptation transform with adversarial training, for
capturing the correspondences between image generation and
semantic segmentation.

IV. EXPERIMENTAL RESULTS

In this section, we describe the experimental evaluation
of our framework. We apply and evaluate our framework to
the task of predictive scene parsing on two public datasets,
i.e., Cityscapes and CamVid.

A. Experimental Settings

Cityscapes [41] consists of 19 semantic categories and
5,000 images with a high resolution of 2048 × 1024 pixels.
It is collected from 50 individual European cities with a
diverse geographic and population distribution, at a frame rate
of 17 fps. Each video sequence lasts for 1.8s and contains
30 frames, among which the 20th frame has fine-grained man-
ual ground-truth of semantic segmentation. Following [41],
we split the whole dataset into three parts: 2,975 training
samples, 500 validation samples and 1,525 test samples in
our experiments.

CamVid [42] contains over ten minutes’ videos, and
701 color images with resolution 960 × 720 are pixel-level
annotated on 11 semantic classes. These images are obtained
from driving videos captured at daytime and dusk. Each video
contains 5,000 frames on the average, amounting to 40K
frames in total. Following [4], we choose 60%, 10% and 30%
of the frames as training set, validation set (or development
set) and test set, respectively.

Metrics: Following most of previous works, we adopt
three standard performance metrics: per-pixel accuracy (PA),
average per-class accuracy (CA), and mean Intersection-
over-Union (mIoU). PA is defined as the percentage of
all correctly classified pixels, while CA is the average of
all category-wise accuracies. mIoU is defined as the pixel
intersection-over-union averaged across all classes. Moreover,
we utilized a pair-wise t-test [43] to compare the performance
of our proposed method and other baseline models, in order
to make the experimental results more convincing.

Baseline Methods: We compare our method with three types
of approaches2:

• The state-of-the-art methods for image or video semantic
segmentation, i.e., FCN [8], SegNet [10], DilatedNet [44],
DeepLab v2 [6], FSO-CRF [16], Deep Structure [45],
LRR-4X [46], RefineNet-Res101 [47], Liu et al. [48],
DAG-RNN [49], RTDF [50], MPF-RNN [51], VPN-
Flow [15], NetWarp-Dilation [13], Low-Latency [17],
DSTRF [12] 3;

• Methods focused on predictive scene parsing,
i.e., S2S [3], PEARL [1], SPMD [2], Bi-ConvLSTM [21],
MTCE [22] and RPPNet [23]. S2S [3] employs
an autoregressive model to predict the future
frames, PEARL [1] adopts a two-stage GAN-based
learning model to predictive video scene parsing,
SPMD [2] incorporates motion dynamic information
for predicting scene parsing, Bi-ConvLSTM [21]
utilizes a bidirectional convolutional LSTM, MTCE [22]
employs a multi-timescale context encoding method,
and RPPNet [23] leverages a depth embedded recurrent
network;

2In the experiments, the parameter setting of above-mentioned methods are
adopted from the corresponding papers.

3Note that for the comparison with other single frame-wise segmentation
models in our experiments, such as SegNet [10], the input of SegNet is the T -
th frame, while the input of our proposed STC-GAN is a sequence of observed
previous frames, i.e., T -3, . . . , T -1, and eventually we compare their output
parsing map of T -th frame.
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• In addition, we report the performance with VGG16 [52]
and Res101 [36] as the backbone of our STC-GAN for
fair comparison, respectively.

B. Implementation Details

In this work, all the implementations are based on the
PyTorch4 framework. Generally, we choose VGG16 [52] as the
backbone structure (up to the third pooling layer, and replace
its 3 × 3 convolutions with 5 × 5/5 × 5/7 × 7 convolutions,
respectively) as spatial-temporal encoder of our STC-GAN’s
future frame generation model. We also adopt the same
architecture in the predictive scene parsing model. Meanwhile,
we adopt three consecutive 3 × 3 and two consecutive 3 × 3
convolutions in the combination layers and in the multi-scale
residual layers, respectively. We share the parameters for these
first three layers, i.e., k = 3 in Eq. (12). The predictive decoder
of our STC-GAN is a three-layer Deconvolutional Network
with the un-pooling operation. Hence, we transform the fea-
tures of these three layers to the decoder in predictive scene
parsing model. Our predictive scene parsing model employs
an encoder-decoder architecture similar to SegNet [4], where
the encoder is initially trained with the shared weights, and
the decoder utilizes a deconvolutional segmentation model.
Each encoder layer has a corresponding decoder layer, and the
final decoder output is fed to a multi-class soft-max classifier
to produce class probabilities for each pixel independently.
In the experiments, we utilize the ADAM algorithm [53]
for training. The learning rate is set to 2 × 10−4 and the
momentum parameters are set to 0.5 and 0.999. Moreover,
the mini-batch size is 128 with 25, 000 iterations. In practice,
the hyper-parameters are set to α = 1, β = 0.02, and λ=1 in
the loss functions. All the framework is trained on a single
NVIDIA 1080 Ti GPU.

Following [2], we obtain totally 35K and 8.8K sequences
from Cityscapes and CamVid, respectively, by randomly
choosing four preceding consecutive frames, i.e., k = 4 in
xt−k:t−1, as the input data in future frame generation with
enough motion changes (measured by the L2 distance between
the raw frames). Moreover, we select four frames before the
fine labeled frames as the input in the predictive scene parsing
phrase. In addition, all input frames are normalized to [−1, 1]
in pixels level. Then we employ random cropping with the size
of 256 × 256 and random mirroring for data augmentation.

Computational Efficiency: Our model can produce the pars-
ing result of a frame within 0.6 seconds with resolution
1, 024 × 2, 048 on a single NVIDIA 1080 Ti GPU during
test, which is faster than other existing works [1], [3].

C. Performance Comparisons

1) Results on Cityscapes: Quantitative performance com-
parisons of our STC-GAN with other methods following their
evaluation protocol are shown in Table I. It is noted that
our STC-GAN with ResNet101 achieves the best performance
in terms of CA (47.3%), surpassing the strong baseline
model (DeepLab v2 and DilatedNet) by 5%, showing that our

4http://pytorch.org

TABLE I

PERFORMANCE COMPARISONS OF OUR METHOD WITH THE
STATE-OF-THE-ART APPROACHES ON CITYSCAPES TEST SET.

Res101 [36] DENOTES THE METHODS ADOPTING RES101
AS THE BACKBONE, WHILE OTHER APPROACHES

UTILIZE VGG16 [52]. BEST
RESULTS ARE IN BOLD

method can distinguish and classify more accurate semantic
class, while the representations extracted by more advanced
model are beneficial to parsing. Even if comparing our pro-
posed STC-GAN with other state-of-the-art predictive scene
parsing approaches (i.e., S2S [3], PEARL [1], SPMD [2],
Bi-ConvLSTM [21], MTCE1 [22] and RPPNet [23]), our
model still outperforms them demonstrating the effectiveness
and superiority of the proposed coupled generative adversarial
architecture. Furthermore, STC-GAN also obtains the best
performance w.r.t. mIoU (76.1%), suggesting that our model
is capable of capturing more consistent temporal informa-
tion to help scene parsing. Note that our model focuses on
generating future frames and learning better representations
for video semantic segmentation, and thus adopts a basic
structure similar to SegNet for segmentation. Our STC-GAN
can be combined with the state-of-the-art segmentation models
for further improved performance. When we employ Deep
v3 [54] and v3+ [55] as our segmentation model, the results
of STC-GAN can increase about 5% and 6% w.r.t mIoU
in Cityscapes, respectively. Meanwhile, we also compare the
results of our proposed model with other state-of-the-art meth-
ods in terms of per-class mIoU, and the results are reported
in Table II. As shown in Table II, we can clearly observe
that our proposed STC-GAN with Res101 achieves the best
performance in terms of most of classes, e.g., pole, vegetable
and road, demonstrating the benefits of our approach. For
example, our proposed model obtain 98.6% and 93.6% w.r.t
mIoU in road and vegetable, showing our model is able to
generate smoother parsing map and capture the space-time
consistency between frames.

In addition, qualitative examples of future frame generation
and scene parsing results produced by our STC-GAN with
VGG16 are depicted in Fig. 4. Visually, the future frame
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Fig. 4. Example of future frame generation and predictive scene parsing results on the Cityscapes dataset. In the first row, first three columns show the
input prior frames of a video, i.e., xT −2:T , the last two columns are the future frames generated by our STC-GAN (denoted in yellow box), i.e., x̂T +1:T +2.
The second and third rows illustrate the predictive parsing results given observed frames, i.e., xT −1:T , and comparing the results of our STC-GAN with
Ground-Truth (denoted as GT) and DeepLab v2. Quite a few small objects can be labeled accurately by our STC-GAN denoted in yellow box.

TABLE II

PER-CLASS RESULTS COMPARISONS W.R.T MEAN INTERSECTION-OVER-UNION (MIOU) OF OUR METHOD WITH THE STATE-OF-THE-ART

APPROACHES ON CITYSCAPES TEST SET. Res101 [36] DENOTES THE METHODS ADOPT RES101 AS THE BACKBONE, WHILE

OTHER APPROACHES UTILIZE VGG16 [52]. BEST RESULTS ARE IN BOLD

generated by our model is realistic and similar to the ground-
truth, showing that our STC-GAN can capture the change of
appearance and motion from prior frames. Furthermore, our
model generates smoother parsing maps (e.g., vegetation, traf-
fic sign or pole), and successfully learn the video segmentation
even when the frames change significantly. We think the reason
why our proposed method outperforms the other approaches
is that our STC-GAN can learn much better and consistent
spatial-temporal features through the spatial-temporal encoder
in generating future frames.

2) Results on CamVid: We also evaluate our model on
the CamVid dataset against multiple state-of-the-art methods.
It is worth noting that compared to the Cityscapes dataset,
CamVid is a much smaller dataset, which may affect the
power of deep architectures due to the lack of training exam-
ples. Nevertheless, our STC-GAN still outperforms all the
baseline approaches in terms of CA and mIoU. In Table III,
we report the results w.r.t. PA, CA and mIoU. Our STC-GAN
with Res101 obtains the best performance, especially improv-
ing mIoU by 15% to 17% over SegNet, demonstrating the

effectiveness and superiority of our model. Meanwhile, our
STC-GAN with Res101 achieves the best performance across
CA (85.2%), denoting that our model can recognize semantic
classes more accurately and learn meaningful representation
through the weight-sharing mechanism and feature adapta-
tion transform between two models. Moreover, STC-GAN
with VGG16 also obtains competitive performance compared
with other state-of-the-art. In addition, our STC-GAN out-
performs the optical flow based methods (i.e., RTDF [50]
and Liu et al. [48]), demonstrating STC-GAN can model
spatio-temporal contextual information in a sequence. Fig. 5
illustrates the qualitative scene parsing maps generated by
our STC-GAN on CamVid. We can see quite a few pixels
are refined and several small objects (e.g., pedestrian, tree or
bicyclist) can be labeled correctly by our model. Additionally,
we also show the per-class mIoU result of our proposed model
and other approaches in Table IV. From the table, it is obvi-
ous that our proposed STC-GAN with Res101 outperforms
other state-of-the-art methods across all classes, due to the
spatial-temporal continuity captured by the predictive features
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Fig. 5. Example scene parsing results of our model on the CamVid dataset. The first row is the last input frame, and the second row is the ground truth of
segmentation map for the next frame, and the third row is the parsing map produced by our STC-GAN.

TABLE III

PERFORMANCE COMPARISONS OF OUR METHOD WITH THE

STATE-OF-THE-ART APPROACHES ON CAMVID TEST SET.
Res101 [36] DENOTES THE METHODS ADOPTING

RES101 AS THE BACKBONE, WHILE OTHER

APPROACHES UTILIZE VGG16 [52].
BEST RESULTS ARE IN BOLD

of STC-GAN. The consistently state-of-the-art performances
on both datasets suggest that our framework is effective for
both future frame generation and predictive scene parsing.

3) Statistical Analysis: Because current video segmentation
methods utilized the small-size datasets, i.e., the Cityscapes
dataset and CamVid dataset for evaluation, it is necessary to
examine whether the difference of performances is statistically
significant or not. In our experiments, we use the pairwise
t-test [43] to compare the performance w.r.t PA, CA and
mIoU of our proposed method and two widely-adopted open-
source baselines, i.e., SegNet [4] and DeepLab v2 [6]. All of
these models adopt VGG16 as backbone for fair comparison.
Table V shows the experimental results (mean ± standard
deviation) w.r.t PA, CA and mIoU obtained using our pro-
posed STC-GAN and other baseline approaches on Cityscapes
dataset and CamVid dataset. Meanwhile, Table VI reports the

t-test results when comparing the performance of STC-GAN
versus SegNet [4] and STC-GAN versus DeepLab v2 [6],
where “�” refers to the p-value is lesser than 0.05, indicating
a strong evidence that a method results in a greater value
for the effectiveness measure than another method. From two
tables, we can find that our proposed STC-GAN outperforms
two baseline models in terms of quantitative results, as well
as has statistically significant superior performances than
SegNet [4] and DeepLab v2 [6] over three metrics (i.e., PA,
CA and mIoU). The reason can be explained by the proposed
method is able to capture better spatial-temporal representa-
tion from observed frames to enhance semantic segmentation
model.

D. Ablation Study

In the following, we will analyze and investigate the effect
of each component of the proposed STC-GAN on Cityscapes,
respectively.

1) Analysis of the Spatial-Temporal Encoder-Decoder: To
provide evidence of the effectiveness of the spatial-temporal
encoder-decoder in STC-GAN, we conduct further exper-
iments for comparison. As can be seen from Table VII,
we compare our proposed STC-GAN with two baselines
including Baseline-VGG16/Res101 that only utilizes the visual
appearance features for scene parsing, and OF-VGG16/Res101
that combines the optical flow features and appearance features
for segmentation. Baseline-VGG16/Res101 denotes inputting
each frame to our segmentation model with VGG16 or
Res101 and then merge the input frame’s probability maps
to achieve the final parsing map; OF-VGG16/Res101 refers
to concatenating optical flow features by epic flow [56]
from xt−1 and xt with the feature of frame xt with
VGG16 or Res101. Compared with Baseline-VGG16/Res101,
our STC-GAN achieves significant performance improve-
ments (gain of 9% and 4% w.r.t mIoU with VGG16 and
Res101, respectively), suggesting that our STC-GAN obtains
better performance as the result of our spatio-temporal
encoder-decoder can capture distinctive and consistent rep-
resentations in space-time than the appearance features or
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TABLE IV

PER-CLASS RESULTS COMPARISONS W.R.T MEAN INTERSECTION-OVER-UNION (MIOU) OF OUR METHOD WITH THE STATE-OF-THE-ART

APPROACHES ON CAMVID TEST SET. Res101 [36] DENOTES THE METHODS ADOPT RES101 AS THE BACKBONE,

WHILE OTHER APPROACHES UTILIZE VGG16 [52]. BEST RESULTS ARE IN BOLD

TABLE V

PERFORMANCE COMPARISONS OF OUR METHOD WITH THE
STATE-OF-THE-ART APPROACHES ON CITYSCAPES AND

CAMVID TEST SET. THE RESULTS ARE SHOWN AS

MEAN ± STANDARD DEVIATION. BEST
RESULTS ARE IN BOLD

TABLE VI

THE t-TEST RESULTS OF OUR METHOD COMPARED WITH SEGNET [4]
AND DEEPLAB V2 [6] ON CITYSCAPES AND CAMVID TEST SET. “�”

REFERS TO THE p-VALUE IS LESSER THAN 0.05

optical flow features employed by the baselines. It reveals
that the naively concatenating appearance feature and noisy
probability maps would lead to worse performance. Fur-
thermore, we observe that OF-VGG16/Res101 obtain better
performance than Baseline-VGG16/Res101, but still worse
than our STC-GAN. Clearly, optical flow can be beneficial for
representing the motional information, but our spatio-temporal
encoder-decoder has much stronger capacity to capture tem-
poral change and transfer spatial-temporal knowledge of
observed frames to the predictive parsing task.

In addition, we have further conducted experiments on the
efficacy of the adversarial loss, and the results are shown
in Table VII. When we set α = 1 and β = 0 in Eq. (5),
it means we only use Limg without adversarial learning, while

TABLE VII

COMPARATIVE STUDY TO ANALYZE THE SPATIAL-TEMPORAL
ENCODER-DECODER. VGG16 AND Res101 DENOTE THE

BACKBONE OF METHODS, AND OF MEANS THE

OPTICAL FLOW MAPS. BEST RESULTS
ARE IN BOLD

for α = 0 and β = 1 we only use Lgen . We find that our model
with only Limg achieves the worst results, while only adopting
Lgen can improve the performance obviously, suggesting the
adversarial loss is more important and effective in STC-GAN.
The discriminator is utilized for distinguishing the real frame
and generated frames, which can help the generator create
more realistic future frame and enhance the ability of learning
distinctive representations through the adversarial training.
When we utilize both loss functions in STC-GAN simulta-
neously, our model can obtain the best performance. This also
demonstrates combining Limg and Lgen can enhance the frame
prediction and make the generator better, by penalizing the
differences of image gradient.

2) Ablation Study of the Coupled Architecture: We
also evaluate the effectiveness of our proposed coupled
architecture. We conduct further experiments to compare our
proposed STC-GAN with two variants, i.e., one variant only
using the features of spatio-temporal encoder-decoder model
for parsing, the other variant only using the features from
predictive scene parsing model for parsing. Neither of these
two variants employs the joint training strategy. The experi-
mental results are reported in Table VIII. Specifically, the first
variant utilizes the output feature of spatio-temporal encoder
in STC-GAN with pixel classify layer for scene parsing,
which only uses the spatio-temporal feature and the results
are not satisfactory (denoted as ‘S-T-Encoder’ in Table VIII).
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TABLE VIII

ABLATIVE STUDY TO ANALYZE THE EFFECTIVENESS OF THE COUPLED
ARCHITECTURE. VGG16 DENOTES THE BACKBONE OF METHODS,

AND S-T-Encoder MEANS THE SPATIO-TEMPORAL ENCODER OF

STC-GAN, AND Parsing IS THE PREDICTIVE SCENE PARSING

MODEL OF STC-GAN. BEST RESULTS ARE IN BOLD

The second variant leverages the output features of predictive
scene parsing model in STC-GAN with the pixel classify
layer (denoted as ‘Parsing’ in Table VIII), the performance
of which is better than the first one. However, it lacks
the jointly training, which limits its performance gain, and
hence it is still inferior to our proposed method. Particularly,
compared to these two variants, our STC-GAN achieves the
best performance, which is credited to the strong complemen-
tary information learned by the weight-sharing and feature
adaptation transform in the coupled architecture. The results
reveal that the coupled architecture with joint training between
the future frame generation model and the predictive scene
parsing model in our proposed STC-GAN is quite effective.

V. CONCLUSION

In this paper, we present a novel Generative Adversarial
Networks-based model (i.e., STC-GAN) for predictive scene
parsing. STC-GAN captures both spatial and temporal rep-
resentations from the observed frames of a video through
CNN and convolutional LSTM network. Moreover, a coupled
architecture is employed to guide the adversarial training via a
weight-sharing mechanism and a feature adaptation transform
between the future frame generation model and the predictive
scene parsing model. Extensive results on two widely-adopted
benchmarks have demonstrated that our proposed STC-GAN
model outperforms the state-of-the-art approaches and is capa-
ble of learning and producing consistent, robust and accu-
rate anticipated semantic segmentation results. In the future,
we will study how to introduce multi-modal information to
help improve the performance of predictive scene parsing,
e.g., optical flow, audio and depth information. Furthermore,
how to apply the proposed model into real autonomous driving
scenario is also deserved to explore further.
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